- 处理数据集
- KNN 分类:Deep Learning Feature
- 尝试不同的距离的度量
- 切比雪夫距离
- 欧氏距离
- 曼哈顿距离
- 余弦距离
- 至少用一种metric learning的方法,来提高KNN的结果
- 写报告
- 实验越多越充分
- 注意参考文献和引用
- 需安装包metric_learn,API地址:http://metric-learn.github.io/metric-learn/metric_learn.rca.html
- mltype:选择的metric learn
- None: 不使用任何metric learn
- MMC: Mahalanobis Metric for Clustering
- LMNN: Large Margin Nearest Neighbor
- NCA: Neighborhood Components Analysis
- LFDA: Local Fisher Discriminant Analysis
- MLKR: Metric Learning for Kernel Regression
- ITML: Information Theoretic Metric Learning
- LSML: Least Squares Metric Learning
- SDML: Sparse Determinant Metric Learning
- RCA: Relative Components Analysis
- distance:KNN使用的距离的类型
- euclidean
- manhattan
- chebyshev
- cosine
- neighbors:KNN中的K
姓名 | 任务 |
---|---|
李东岳 | None, MMC, LMNN |
李杰宇 | NCA, LFDA, MLKR |
王皓轩 | ITML, report |
陈鸿滨 | LSML, SDML, RCA |
- 代码可能会有问题,不过应该都只是API上调用的问题,大家看文档改一下就可以了,有的可能要用带_Supervised()的那个函数
- 有的算法会有爆栈的可能
- 对每个人负责的算法,那几个参数可以用gridsearch来调,结果尽量高过None
- 尽量在这周之内弄完
euclidean | manhattan | chebyshev | cosine | |
---|---|---|---|---|
None | 88.94 | 88.08 | 78.50 | 89.84 |
MMC | - | - | - | - |
LMNN | 90.48 | 89.49 | 76.22 | 90.59 |
NCA | - | - | - | - |
LFDA | 84.60 | 64.49 | 89.99 | 89.74 |
MLKR | - | - | - | - |
ITML | - | - | - | - |
LSML | 79.87 | 9.02 | 19.98 | 85.87 |
SDML | - | - | - | - |
RCA |
- None(distance=euclidean,neighbors=50)结果为86.45,neighbors可以考虑先用gridsearch,针对每种距离选取一个最好的neighbors的取值,然后所有的度量学习方法在过KNN的时候都使用这个值,如果有时间的话再做它对acc的影响的实验
Neighbors_Num | euclidean | manhattan | chebyshev | cosine |
---|---|---|---|---|
1 | 87.59 | 87.44 | 75.97 | 88.31 |
3 | 88.37 | 87.87 | 77.02 | 89.17 |
5 | 88.94 | 88.08 | 78.50 | 89.84 |
8 | 88.84 | 87.85 | 78.56 | 90.19 |
10 | 88.85 | 87.63 | 78.45 | 90.24 |
15 | 88.53 | 86.97 | 78.36 | 90.07 |
20 | 87.96 | 86.42 | 77.97 | 89.78 |
30 | 87.36 | 85.76 | 77.01 | 89.54 |
40 | 86.90 | 84.91 | 76.10 | 89.16 |
50 | 86.45 | 84.30 | 75.08 | 89.00 |
100 | 84.47 | 81.84 | 72.29 | 87.62 |
Neighbors_Num | euclidean | manhattan | chebyshev | cosine |
---|---|---|---|---|
1 | 87.58 | 78.99 | 84.53 | 87.84 |
3 | 88.36 | 77.77 | 85.92 | 88.94 |
5 | 88.93 | 76.40 | 86.99 | 89.30 |
8 | 88.84 | 74.60 | 87.40 | 89.33 |
10 | 88.85 | 73.44 | 87.34 | 89.41 |
15 | 88.52 | 70.96 | 87.19 | 89.62 |
20 | 87.95 | 68.73 | 87.05 | 89.17 |
30 | 87.36 | 64.72 | 86.60 | 89.01 |
40 | 86.90 | 61.53 | 86.04 | 88.64 |
50 | 86.44 | 58.84 | 85.62 | 88.19 |
100 | 84.46 | 48.99 | 83.91 | 86.77 |
Neighbors_Num | euclidean | manhattan | chebyshev | cosine |
---|---|---|---|---|
1 | 88.76 | 87.78 | 74.19 | 88.61 |
3 | 89.52 | 88.74 | 74.81 | 89.95 |
5 | 90.48 | 89.49 | 76.22 | 90.59 |
8 | 90.60 | 89.36 | 76.83 | 90.91 |
10 | 90.52 | 89.60 | 76.79 | 91.00 |
15 | 90.66 | 89.38 | 76.61 | 91.06 |
20 | 90.37 | 88.98 | 76.10 | 90.96 |
30 | 89.91 | 88.54 | 75.42 | 90.71 |
40 | 89.57 | 87.93 | 74.55 | 90.61 |
50 | 89.20 | 87.47 | 73.95 | 90.27 |
100 | 87.71 | 85.87 | 71.40 | 89.61 |
Neighbors_Num | euclidean | manhattan | chebyshev | cosine |
---|---|---|---|---|
1 | 88.78 | 86.52 | 85.55 | 88.43 |
3 | 89.53 | 86.80 | 86.99 | 89.41 |
5 | 90.48 | 87.41 | 88.11 | 89.81 |
8 | 90.61 | 87.24 | 88.59 | 90.13 |
10 | 90.53 | 87.14 | 88.75 | 90.17 |
15 | 90.66 | 86.66 | 88.86 | 90.31 |
20 | 90.37 | 86.29 | 88.86 | 90.09 |
30 | 89.90 | 85.46 | 88.59 | 89.89 |
40 | 89.57 | 84.43 | 88.21 | 89.54 |
50 | 89.20 | 84.54 | 88.06 | 89.18 |
100 | 87.71 | 80.43 | 86.49 | 88.26 |
Neighbors_Num | euclidean | manhattan | chebyshev | cosine |
---|---|---|---|---|
1 | 84.95 | 67.64 | 87.74 | 88.92 |
3 | 84.94 | 65.61 | 89.22 | 89.33 |
5 | 85.16 | 63.87 | 89.87 | 89.71 |
8 | 85.18 | 62.24 | 90.22 | 89.20 |
10 | 84.99 | 61.40 | 90.15 | 89.08 |
15 | 84.52 | 59.98 | 90.29 | 88.86 |
20 | 84.34 | 58.59 | 90.24 | 88.64 |
30 | 83.88 | 56.32 | 90.12 | 88.25 |
40 | 83.52 | 54.97 | 90.07 | 87.72 |
50 | 83.29 | 53.78 | 89.83 | 87.32 |
100 | 81.70 | 50.03 | 89.58 | 85.88 |
Neighbors | euclidean | manhattan | chebyshev | cosine |
---|---|---|---|---|
1 | 15.61 | 16.71 | 19.82 | 82.58 |
3 | 9.96 | 10.86 | 18.60 | 84.25 |
5 | 7.99 | 9.00 | 20.00 | 85.86 |
8 | 6.90 | 7.88 | 20.74 | 86.35 |
10 | 6.19 | 7.03 | 20.62 | 86.67 |
15 | 5.28 | 5.83 | 20.28 | 86.42 |
20 | 5.18 | 5.49 | 20.30 | 86.23 |
30 | 4.86 | 5.07 | 19.63 | 84.97 |
40 | 4.68 | 4.98 | 19.01 | 83.54 |
50 | 4.50 | 4.88 | 18.40 | 82.00 |
100 | 3.82 | 4.42 | 16.58 | 73.78 |