Generation Expansion Planning (GEP) models considering uncertainties on renewable energy resources (RES)
The following files solve the GEP problem for three scenarios of wind and solar production using different approaches:
The models are developed in GAMS and solved with CPLEX, but you could use any other solver (e.g., GUROBI, Cbc).
Name |
Description |
$p$ |
time periods |
$g$ |
generation technologies |
$r(g)$ |
subset of renewable techonologies |
$sc$ |
scenarios |
Name |
Domains |
Description |
$pVOLL $ |
|
Value of Lost Load [$/MWh] |
$pWeight $ |
|
Representative period weight [hours] |
$pInvCost$ |
$g$ |
Investment cost [$/MW] |
$pVarCost$ |
$g$ |
Variable production cost [$/MWh] |
$pUnitCap$ |
$g$ |
Capacity per each invested unit [MW/unit] |
$pRenProf$ |
$r,p,sc$ |
Renewable profile (e.g., load factor) [p.u.] |
$pDemand $ |
$p$ |
Demand [MW] |
$pScProb $ |
$sc$ |
Scenario probability [p.u.] |
Name |
Domains |
Description |
$vTotCost $ |
|
Total system cost [$] |
$vInvCost $ |
|
Total investment cost [$] |
$vOpeCost $ |
|
Total operating cost [$] |
$vGenInv $ |
$g$ |
Generation investment [1..N] |
$vGenProd $ |
$g,p,sc$ |
Generation production [MW] |
$vLossLoad$ |
$p,sc$ |
Loss of load [MW] |
Name |
Domains |
Description |
eObjFun |
|
Total system cost [$] |
eInvCost |
|
Total investment cost [$] |
eOpeCost |
|
Total operating cost [$] |
eBalance |
$p,sc$ |
Power system balance [MWh] |
eMaxProd |
$g,p,sc$ |
Maximum generation production [MW] |
eRenProd |
$r,p,sc$ |
Maximum renewable production [MW] |
$$
\displaystyle{\min{vTotCost = vInvCost + vOpeCost}}
$$
$$
vInvCost = \displaystyle \sum_{g}(pInvCost_{g} \cdot pUnitCap_{g} \cdot vGenInv_{g})
$$
$$
vOpeCost = pWeight \cdot {\left(\displaystyle \sum_{sc}pScProb_{sc}\cdot{\left(\sum_{g,p}pVarCost_{g} \cdot vGenProd_{g,p,sc} + \sum_{p,sc}pVOLL \cdot vLossLoad_{p,sc}\right)}\right)}
$$
$$
\displaystyle \sum_{g}vGenProd_{g,p,sc} + vLossLoad_{p,sc} = pDemand_{p} \quad \forall{p,sc}
$$
$$
vGenProd_{g,p,sc} \leq pUnitCap_{g} \cdot vGenInv_{g} \quad \forall{g,p,sc}
$$
$$
vGenProd_{r,p,sc} \leq pRenProf_{r,p,sc} \cdot pUnitCap_{r} \cdot vGenInv_{r} \quad \forall{r,p,sc}
$$
$vGenProd_{g,p,sc}\geq 0 ~ \forall g, p, sc $
$vLossLoad_{p,sc}\geq 0 ~ \forall p, sc $
$vGenInv_{g} \in \mathbb{Z}^{+} ~ \forall g $
The main references to model the optimization problems are:
[1] Optimization Techniques by Andrés Ramos Galán
[2] A. J. Conejo, L. Baringo, S. J. Kazempour and A. S. Siddiqui, Investment in Electricity Generation and Transmission, Cham, Zug, Switzerland:Springer, 2016.
[3] Sun X.A., Conejo A.J. (2021) Static Robust Optimization. In: Robust Optimization in Electric Energy Systems. International Series in Operations Research & Management Science, vol 313. Springer, Cham.