Learning to Rank Question-Answer Pairs using Hierarchical Recurrent Encoder with Latent Topic Clustering, NAACL-18, paper
tensorflow==1.14 (tested)
python==2.7
- data corpus is available from "releases" tab
- place each data corpus into following path of the project
/ data / ubuntu_v1 / / ubuntu_v2 / / samsungQA /
/ data : contains dataset (ubuntu v1/v2, samsungQA) / src_ubuntu_v1 : source code for ubuntu v1 data / src_ubuntu_v2 : source code for ubuntu v2 data / src_samsungQA : source code for samsung QA data
- each source code folder contains training script << for example >>
/src_ubunutu_v1/ ./run_RDE.sh : train ubuntu_v1 dataset with RDE model ./run_RDE_LTC.sh : train ubuntu_v1 dataset with RDE-LTC model ./run_HRDE.sh : train ubuntu_v1 dataset with HRDE model ./run_HRDE_LTC.sh : train ubuntu_v1 dataset with HRDE-LTC model
- best model will be stored in save folder << for example >>
/src_ubunutu_v1/save/
- each source code folder contains inference code
<< execution example >> /src_ubunutu_v1/
python eval_RDE.py : inference ubuntu_v1 testset with RDE model python eval_RDE_LTC.py : inference ubuntu_v1 testset with RDE-LTC model python eval_HRDE.py : inference ubuntu_v1 testset with HRDE model python eval_HRDE_LTC.py : inference ubuntu_v1 testset with HRDE-LTC model
- inference code use saved model in 'save' folder
- inference result will be stored in 'save' folder << example >>
/src_ubunutu_v1/save/result_RDE.txt
- Please cite our paper, when you use our code | dataset | model.
@inproceedings{yoon2018learning, title={Learning to Rank Question-Answer Pairs Using Hierarchical Recurrent Encoder with Latent Topic Clustering}, author={Yoon, Seunghyun and Shin, Joongbo and Jung, Kyomin}, booktitle={Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, volume={1}, pages={1575--1584}, year={2018} }