This module provides a bridge between Scikit-Learn's machine learning methods and pandas-style Data Frames.
In particular, it provides a way to map DataFrame
columns to transformations, which are later recombined into features.
You can install sklearn-pandas
with pip
:
# pip install sklearn-pandas
or conda-forge:
# conda install -c conda-forge sklearn-pandas
The examples in this file double as basic sanity tests. To run them, use doctest
, which is included with python:
# python -m doctest README.rst
Import what you need from the sklearn_pandas
package. The choices are:
DataFrameMapper
, a class for mapping pandas data frame columns to different sklearn transformations
For this demonstration, we will import both:
>>> from sklearn_pandas import DataFrameMapper
For these examples, we'll also use pandas, numpy, and sklearn:
>>> import pandas as pd >>> import numpy as np >>> import sklearn.preprocessing, sklearn.decomposition, \ ... sklearn.linear_model, sklearn.pipeline, sklearn.metrics, \ ... sklearn.compose >>> from sklearn.feature_extraction.text import CountVectorizer
Normally you'll read the data from a file, but for demonstration purposes we'll create a data frame from a Python dict:
>>> data = pd.DataFrame({'pet': ['cat', 'dog', 'dog', 'fish', 'cat', 'dog', 'cat', 'fish'], ... 'children': [4., 6, 3, 3, 2, 3, 5, 4], ... 'salary': [90., 24, 44, 27, 32, 59, 36, 27]})
- The mapper takes a list of tuples. Each tuple has three elements:
- column name(s): The first element is a column name from the pandas DataFrame, or a list containing one or multiple columns (we will see an example with multiple columns later) or an instance of a callable function such as make_column_selector.
- transformer(s): The second element is an object which will perform the transformation which will be applied to that column.
- attributes: The third one is optional and is a dictionary containing the transformation options, if applicable (see "custom column names for transformed features" below).
Let's see an example:
>>> mapper = DataFrameMapper([ ... ('pet', sklearn.preprocessing.LabelBinarizer()), ... (['children'], sklearn.preprocessing.StandardScaler()) ... ])
The difference between specifying the column selector as 'column'
(as a simple string) and ['column']
(as a list with one element) is the shape of the array that is passed to the transformer. In the first case, a one dimensional array will be passed, while in the second case it will be a 2-dimensional array with one column, i.e. a column vector.
This behaviour mimics the same pattern as pandas' dataframes __getitem__
indexing:
>>> data['children'].shape (8,) >>> data[['children']].shape (8, 1)
Be aware that some transformers expect a 1-dimensional input (the label-oriented ones) while some others, like OneHotEncoder
or Imputer
, expect 2-dimensional input, with the shape [n_samples, n_features]
.
We can use the fit_transform
shortcut to both fit the model and see what transformed data looks like. In this and the other examples, output is rounded to two digits with np.round
to account for rounding errors on different hardware:
>>> np.round(mapper.fit_transform(data.copy()), 2) array([[ 1. , 0. , 0. , 0.21], [ 0. , 1. , 0. , 1.88], [ 0. , 1. , 0. , -0.63], [ 0. , 0. , 1. , -0.63], [ 1. , 0. , 0. , -1.46], [ 0. , 1. , 0. , -0.63], [ 1. , 0. , 0. , 1.04], [ 0. , 0. , 1. , 0.21]])
Note that the first three columns are the output of the LabelBinarizer
(corresponding to cat
, dog
, and fish
respectively) and the fourth column is the standardized value for the number of children. In general, the columns are ordered according to the order given when the DataFrameMapper
is constructed.
Now that the transformation is trained, we confirm that it works on new data:
>>> sample = pd.DataFrame({'pet': ['cat'], 'children': [5.]}) >>> np.round(mapper.transform(sample), 2) array([[1. , 0. , 0. , 1.04]])
In certain cases, like when studying the feature importances for some model,
we want to be able to associate the original features to the ones generated by
the dataframe mapper. We can do so by inspecting the automatically generated transformed_names_
attribute of the mapper after transformation:
>>> mapper.transformed_names_ ['pet_cat', 'pet_dog', 'pet_fish', 'children']
We can provide a custom name for the transformed features, to be used instead of the automatically generated one, by specifying it as the third argument of the feature definition:
>>> mapper_alias = DataFrameMapper([ ... (['children'], sklearn.preprocessing.StandardScaler(), ... {'alias': 'children_scaled'}) ... ]) >>> _ = mapper_alias.fit_transform(data.copy()) >>> mapper_alias.transformed_names_ ['children_scaled']
Alternatively, you can also specify prefix and/or suffix to add to the column name. For example:
>>> mapper_alias = DataFrameMapper([ ... (['children'], sklearn.preprocessing.StandardScaler(), {'prefix': 'standard_scaled_'}), ... (['children'], sklearn.preprocessing.StandardScaler(), {'suffix': '_raw'}) ... ]) >>> _ = mapper_alias.fit_transform(data.copy()) >>> mapper_alias.transformed_names_ ['standard_scaled_children', 'children_raw']
In some situations the columns are not known before hand and we would like to dynamically select them during the fit operation. As shown below, in such situations you can provide either a custom callable or use make_column_selector.
>>> class GetColumnsStartingWith: ... def __init__(self, start_str): ... self.pattern = start_str ... ... def __call__(self, X:pd.DataFrame=None): ... return [c for c in X.columns if c.startswith(self.pattern)] ... >>> df = pd.DataFrame({ ... 'sepal length (cm)': [1.0, 2.0, 3.0], ... 'sepal width (cm)': [1.0, 2.0, 3.0], ... 'petal length (cm)': [1.0, 2.0, 3.0], ... 'petal width (cm)': [1.0, 2.0, 3.0] ... }) >>> t = DataFrameMapper([ ... ( ... sklearn.compose.make_column_selector(dtype_include=float), ... sklearn.preprocessing.StandardScaler(), ... {'alias': 'x'} ... ), ... ( ... GetColumnsStartingWith('petal'), ... None, ... {'alias': 'petal'} ... )], df_out=True, default=False) >>> t.fit(df).transform(df).shape (3, 6) >>> t.transformed_names_ ['x_0', 'x_1', 'x_2', 'x_3', 'petal_0', 'petal_1']
Above we use make_column_selector to select all columns that are of type float and also use a custom callable function to select columns that start with the word 'petal'.
By default the transformers are passed a numpy array of the selected columns
as input. This is because sklearn
transformers are historically designed to
work with numpy arrays, not with pandas dataframes, even though their basic
indexing interfaces are similar.
However we can pass a dataframe/series to the transformers to handle custom
cases initializing the dataframe mapper with input_df=True
:
>>> from sklearn.base import TransformerMixin >>> class DateEncoder(TransformerMixin): ... def fit(self, X, y=None): ... return self ... ... def transform(self, X): ... dt = X.dt ... return pd.concat([dt.year, dt.month, dt.day], axis=1) >>> dates_df = pd.DataFrame( ... {'dates': pd.date_range('2015-10-30', '2015-11-02')}) >>> mapper_dates = DataFrameMapper([ ... ('dates', DateEncoder()) ... ], input_df=True) >>> mapper_dates.fit_transform(dates_df) array([[2015, 10, 30], [2015, 10, 31], [2015, 11, 1], [2015, 11, 2]])
We can also specify this option per group of columns instead of for the whole mapper:
>>> mapper_dates = DataFrameMapper([ ... ('dates', DateEncoder(), {'input_df': True}) ... ]) >>> mapper_dates.fit_transform(dates_df) array([[2015, 10, 30], [2015, 10, 31], [2015, 11, 1], [2015, 11, 2]])
By default the output of the dataframe mapper is a numpy array. This is so because most sklearn estimators expect a numpy array as input. If however we want the output of the mapper to be a dataframe, we can do so using the parameter df_out
when creating the mapper:
>>> mapper_df = DataFrameMapper([ ... ('pet', sklearn.preprocessing.LabelBinarizer()), ... (['children'], sklearn.preprocessing.StandardScaler()) ... ], df_out=True) >>> np.round(mapper_df.fit_transform(data.copy()), 2) pet_cat pet_dog pet_fish children 0 1 0 0 0.21 1 0 1 0 1.88 2 0 1 0 -0.63 3 0 0 1 -0.63 4 1 0 0 -1.46 5 0 1 0 -0.63 6 1 0 0 1.04 7 0 0 1 0.21
The names for the columns are the same ones present in the transformed_names_
attribute.
Note this does not work together with the default=True
or sparse=True
arguments to the mapper.
Sometimes it is required to drop a specific column/ list of columns.
For this purpose, drop_cols
argument for DataFrameMapper
can be used.
Default value is None
>>> mapper_df = DataFrameMapper([ ... ('pet', sklearn.preprocessing.LabelBinarizer()), ... (['children'], sklearn.preprocessing.StandardScaler()) ... ], drop_cols=['salary'])
Now running fit_transform
will run transformations on 'pet' and 'children' and drop 'salary' column:
>>> np.round(mapper_df.fit_transform(data.copy()), 1) array([[ 1. , 0. , 0. , 0.2], [ 0. , 1. , 0. , 1.9], [ 0. , 1. , 0. , -0.6], [ 0. , 0. , 1. , -0.6], [ 1. , 0. , 0. , -1.5], [ 0. , 1. , 0. , -0.6], [ 1. , 0. , 0. , 1. ], [ 0. , 0. , 1. , 0.2]])
Transformations may require multiple input columns. In these
Transformations may require multiple input columns. In these cases, the column names can be specified in a list:
>>> mapper2 = DataFrameMapper([ ... (['children', 'salary'], sklearn.decomposition.PCA(1)) ... ])
Now running fit_transform
will run PCA on the children
and salary
columns and return the first principal component:
>>> np.round(mapper2.fit_transform(data.copy()), 1) array([[ 47.6], [-18.4], [ 1.6], [-15.4], [-10.4], [ 16.6], [ -6.4], [-15.4]])
Multiple transformers can be applied to the same column specifying them in a list:
>>> from sklearn.impute import SimpleImputer >>> mapper3 = DataFrameMapper([ ... (['age'], [SimpleImputer(), ... sklearn.preprocessing.StandardScaler()])]) >>> data_3 = pd.DataFrame({'age': [1, np.nan, 3]}) >>> mapper3.fit_transform(data_3) array([[-1.22474487], [ 0. ], [ 1.22474487]])
Only columns that are listed in the DataFrameMapper are kept. To keep a column but don't apply any transformation to it, use None as transformer:
>>> mapper3 = DataFrameMapper([ ... ('pet', sklearn.preprocessing.LabelBinarizer()), ... ('children', None) ... ]) >>> np.round(mapper3.fit_transform(data.copy())) array([[1., 0., 0., 4.], [0., 1., 0., 6.], [0., 1., 0., 3.], [0., 0., 1., 3.], [1., 0., 0., 2.], [0., 1., 0., 3.], [1., 0., 0., 5.], [0., 0., 1., 4.]])
A default transformer can be applied to columns not explicitly selected
passing it as the default
argument to the mapper:
>>> mapper4 = DataFrameMapper([ ... ('pet', sklearn.preprocessing.LabelBinarizer()), ... ('children', None) ... ], default=sklearn.preprocessing.StandardScaler()) >>> np.round(mapper4.fit_transform(data.copy()), 1) array([[ 1. , 0. , 0. , 4. , 2.3], [ 0. , 1. , 0. , 6. , -0.9], [ 0. , 1. , 0. , 3. , 0.1], [ 0. , 0. , 1. , 3. , -0.7], [ 1. , 0. , 0. , 2. , -0.5], [ 0. , 1. , 0. , 3. , 0.8], [ 1. , 0. , 0. , 5. , -0.3], [ 0. , 0. , 1. , 4. , -0.7]])
Using default=False
(the default) drops unselected columns. Using
default=None
pass the unselected columns unchanged.
Sometimes it is required to apply the same transformation to several dataframe columns.
To simplify this process, the package provides gen_features
function which accepts a list
of columns and feature transformer class (or list of classes), and generates a feature definition,
acceptable by DataFrameMapper
.
For example, consider a dataset with three categorical columns, 'col1', 'col2', and 'col3',
To binarize each of them, one could pass column names and LabelBinarizer
transformer class
into generator, and then use returned definition as features
argument for DataFrameMapper
:
>>> from sklearn_pandas import gen_features >>> feature_def = gen_features( ... columns=['col1', 'col2', 'col3'], ... classes=[sklearn.preprocessing.LabelEncoder] ... ) >>> feature_def [('col1', [LabelEncoder()], {}), ('col2', [LabelEncoder()], {}), ('col3', [LabelEncoder()], {})] >>> mapper5 = DataFrameMapper(feature_def) >>> data5 = pd.DataFrame({ ... 'col1': ['yes', 'no', 'yes'], ... 'col2': [True, False, False], ... 'col3': ['one', 'two', 'three'] ... }) >>> mapper5.fit_transform(data5) array([[1, 1, 0], [0, 0, 2], [1, 0, 1]])
If it is required to override some of transformer parameters, then a dict with 'class' key and transformer parameters should be provided. For example, consider a dataset with missing values. Then the following code could be used to override default imputing strategy:
>>> from sklearn.impute import SimpleImputer >>> import numpy as np >>> feature_def = gen_features( ... columns=[['col1'], ['col2'], ['col3']], ... classes=[{'class': SimpleImputer, 'strategy':'most_frequent'}] ... ) >>> mapper6 = DataFrameMapper(feature_def) >>> data6 = pd.DataFrame({ ... 'col1': [np.nan, 1, 1, 2, 3], ... 'col2': [True, False, np.nan, np.nan, True], ... 'col3': [0, 0, 0, np.nan, np.nan] ... }) >>> mapper6.fit_transform(data6) array([[1.0, True, 0.0], [1.0, False, 0.0], [1.0, True, 0.0], [2.0, True, 0.0], [3.0, True, 0.0]], dtype=object)
You can also specify global prefix or suffix for the generated transformed column names using the prefix and suffix parameters:
>>> feature_def = gen_features( ... columns=['col1', 'col2', 'col3'], ... classes=[sklearn.preprocessing.LabelEncoder], ... prefix="lblencoder_" ... ) >>> mapper5 = DataFrameMapper(feature_def) >>> data5 = pd.DataFrame({ ... 'col1': ['yes', 'no', 'yes'], ... 'col2': [True, False, False], ... 'col3': ['one', 'two', 'three'] ... }) >>> _ = mapper5.fit_transform(data5) >>> mapper5.transformed_names_ ['lblencoder_col1', 'lblencoder_col2', 'lblencoder_col3']
DataFrameMapper
supports transformers that require both X and y arguments. An example of this is feature selection. Treating the 'pet' column as the target, we will select the column that best predicts it.
>>> from sklearn.feature_selection import SelectKBest, chi2 >>> mapper_fs = DataFrameMapper([(['children','salary'], SelectKBest(chi2, k=1))]) >>> mapper_fs.fit_transform(data[['children','salary']], data['pet']) array([[90.], [24.], [44.], [27.], [32.], [59.], [36.], [27.]])
A DataFrameMapper
will return a dense feature array by default. Setting sparse=True
in the mapper will return
a sparse array whenever any of the extracted features is sparse. Example:
>>> mapper5 = DataFrameMapper([ ... ('pet', CountVectorizer()), ... ], sparse=True) >>> type(mapper5.fit_transform(data)) <class 'scipy.sparse.csr.csr_matrix'>
The stacking of the sparse features is done without ever densifying them.
While you can use FunctionTransformation
to generate arbitrary transformers, it can present serialization issues
when pickling. Use NumericalTransformer
instead, which takes the function name as a string parameter and hence
can be easily serialized.
>>> from sklearn_pandas import NumericalTransformer >>> mapper5 = DataFrameMapper([ ... ('children', NumericalTransformer('log')), ... ]) >>> mapper5.fit_transform(data) array([[1.38629436], [1.79175947], [1.09861229], [1.09861229], [0.69314718], [1.09861229], [1.60943791], [1.38629436]])
You can change log level to info to print time take to fit/transform features. Setting it to higher level will stop printing elapsed time. Below example shows how to change logging level.
>>> import logging >>> logging.getLogger('sklearn_pandas').setLevel(logging.INFO)
- Added an ability to provide callable functions instead of static column list.
- Removed test for Python 3.6 and added Python 3.9
- Added deprecation warning for NumericalTransformer
- Fixed pickling issue causing integration issues with Baikal.
- Started publishing package to conda repo
- Explicitly handling serialization (#224)
- document fixes
- Making transform function thread safe (#194)
- Switched to nox for unit testing (#226)
- Added elapsed time information for each feature.
- Fix DataFrameMapper drop_cols attribute naming consistency with scikit-learn and initialization.
- Added an option to explicitly drop columns.
- Deprecated support for Python < 3.6.
- Deprecated support for old versions of scikit-learn, pandas and numpy. Please check setup.py for minimum requirement.
- Removed CategoricalImputer, cross_val_score and GridSearchCV. All these functionality now exists as part of scikit-learn. Please use SimpleImputer instead of CategoricalImputer. Also Cross validation from sklearn now supports dataframe so we don't need to use cross validation wrapper provided over here.
- Added
NumericalTransformer
for common numerical transformations. Currently it implements log and log1p transformation. - Added prefix and suffix options. See examples above. These are usually helpful when using gen_features.
- Added
drop_cols
argument to DataframeMapper. This can be used to explicitly drop columns
- Add
FunctionTransformer
class (#117). - Fix column names derivation for dataframes with multi-index or non-string columns (#166).
- Change behaviour of DataFrameMapper's fit_transform method to invoke each underlying transformers' native fit_transform if implemented (#150).
- Fix issues with unicode names in
get_names
(#160). - Update to build using
numpy==1.14
andpython==3.6
(#154). - Add
strategy
andfill_value
parameters toCategoricalImputer
to allow imputing with values other than the mode (#144),(#161). - Preserve input data types when no transform is supplied (#138).
- Add column name to exception during fit/transform (#110).
- Add
gen_feature
helper function to help generating the same transformation for multiple columns (#126).
- Allow inputting a dataframe/series per group of columns.
- Get feature names also from
estimator.get_feature_names()
if present. - Attempt to derive feature names from individual transformers when applying a list of transformers.
- Do not mutate features in
__init__
to be compatible withsklearn>=0.20
(#76).
- Allow specifying a custom name (alias) for transformed columns (#83).
- Capture output columns generated names in
transformed_names_
attribute (#78). - Add
CategoricalImputer
that replaces null-like values with the mode for string-like columns. - Add
input_df
init argument to allow inputting a dataframe/series to the transformers instead of a numpy array (#60).
- Make the mapper return dataframes when
df_out=True
(#70, #74). - Update imports to avoid deprecation warnings in sklearn 0.18 (#68).
- Deprecate custom cross-validation shim classes.
- Require
scikit-learn>=0.15.0
. Resolves #49. - Allow applying a default transformer to columns not selected explicitly in the mapper. Resolves #55.
- Allow specifying an optional
y
argument during transform for supervised transformations. Resolves #58.
- Delete obsolete
PassThroughTransformer
. If no transformation is desired for a given column, useNone
as transformer. - Factor out code in several modules, to avoid having everything in
__init__.py
. - Use custom
TransformerPipeline
class to allow transformation steps accepting only a X argument. Fixes #46. - Add compatibility shim for unpickling mappers with list of transformers created before 1.0.0. Fixes #45.
- Change version numbering scheme to SemVer.
- Use
sklearn.pipeline.Pipeline
instead of copying its code. Resolves #43. - Raise
KeyError
when selecting unexistent columns in the dataframe. Fixes #30. - Return sparse feature array if any of the features is sparse and
sparse
argument isTrue
. Defaults toFalse
to avoid potential breaking of existing code. Resolves #34. - Return model and prediction in custom CV classes. Fixes #27.
- Allow specifying a list of transformers to use sequentially on the same column.
The code for DataFrameMapper
is based on code originally written by Ben Hamner.
Other contributors:
- Ariel Rossanigo (@arielrossanigo)
- Arnau Gil Amat (@arnau126)
- Assaf Ben-David (@AssafBenDavid)
- Brendan Herger (@bjherger)
- Cal Paterson (@calpaterson)
- @defvorfu
- Floris Hoogenboom (@FlorisHoogenboom)
- Gustavo Sena Mafra (@gsmafra)
- Israel Saeta Pérez (@dukebody)
- Jeremy Howard (@jph00)
- Jimmy Wan (@jimmywan)
- Kristof Van Engeland (@kristofve91)
- Olivier Grisel (@ogrisel)
- Paul Butler (@paulgb)
- Richard Miller (@rwjmiller)
- Ritesh Agrawal (@ragrawal)
- @SandroCasagrande
- Timothy Sweetser (@hacktuarial)
- Vitaley Zaretskey (@vzaretsk)
- Zac Stewart (@zacstewart)
- Parul Singh (@paro1234)
- Vincent Heusinkveld (@VHeusinkveld)