/pytorch-sbs

SbS Extension for PyTorch

Primary LanguagePythonOtherNOASSERTION

pytorch-sbs

SbS Extension for PyTorch

Based on these scientific papers

Back-Propagation Learning in Deep Spike-By-Spike Networks
David Rotermund and Klaus R. Pawelzik
Front. Comput. Neurosci., https://doi.org/10.3389/fncom.2019.00055
https://www.frontiersin.org/articles/10.3389/fncom.2019.00055/full

Efficient Computation Based on Stochastic Spikes
Udo Ernst, David Rotermund, and Klaus Pawelzik
Neural Computation (2007) 19 (5): 1313–1343. https://doi.org/10.1162/neco.2007.19.5.1313
https://direct.mit.edu/neco/article-abstract/19/5/1313/7183/Efficient-Computation-Based-on-Stochastic-Spikes

Python

It was programmed with 3.10.4. And I used some 3.10 Python expression. Thus you might get problems with older Python versions.

C++

You need to modify the Makefile in the C++ directory to your Python installation.

In addition your Python installation needs the PyBind11 package installed. You might want to perform a
pip install pybind11
The Makefile uses clang as a compiler. If you want something else then you need to change the Makefile. For CUDA I used version 12.0.

Config files and pre-existing weights

Three .json config files are required:

dataset.json : Information about the dataset

network.json : Describes the network architecture

def.json : Controlls the other parameters

If you want to load existing weights, just put them in a sub-folder called Previous

Other relevant scientific papers

NNMF

Learning the parts of objects by non-negative matrix factorization
Lee, Daniel D., and H. Sebastian Seung. Nature 401.6755 (1999): 788-791.
https://doi.org/10.1038/44565

Algorithms for non-negative matrix factorization.
Lee, Daniel, and H. Sebastian Seung. Advances in neural information processing systems 13 (2000).
https://proceedings.neurips.cc/paper/2000/hash/f9d1152547c0bde01830b7e8bd60024c-Abstract.html

SbS

Massively Parallel FPGA Hardware for Spike-By-Spike Networks
David Rotermund, Klaus R. Pawelzik
https://doi.org/10.1101/500280

Biologically plausible learning in a deep recurrent spiking network David Rotermund, Klaus R. Pawelzik
https://doi.org/10.1101/613471

Accelerating Spike-by-Spike Neural Networks on FPGA With Hybrid Custom Floating-Point and Logarithmic Dot-Product Approximation
Yarib Nevarez, David Rotermund, Klaus R. Pawelzik, Alberto Garcia-Ortiz
https://doi.org/10.1109/access.2021.3085216

Tested installation (under Fedora 37)

mkdir PySource
cd PySource
wget https://www.python.org/ftp/python/3.11.2/Python-3.11.2.tgz
tar -xvzf Python-3.11.2.tgz
cd Python-3.11.2
./configure --prefix=/home/[YOURUSERNAME]/P3.11 --enable-optimizations
make -j 10
make install

cd /home/[YOURUSERNAME]/P3.11/bin
./pip3 install --upgrade pip
./pip3 install numpy scipy pandas flake8 pep8-naming black matplotlib seaborn ipython jupyterlab mypy dataclasses-json dataconf mat73 ipympl torch torchtext pywavelets scikit-image opencv-python scikit-learn tensorflow_datasets tensorboard tqdm argh sympy jsmin pybind11 pybind11-stubgen pigar asciichartpy torchvision torchaudio tensorflow natsort

Please adapt the .env file in the network directory before compling the PyBind11 SbS modules.