This package contains AASM, a library for adding finite state machines to Ruby classes.
AASM started as the acts_as_state_machine plugin but has evolved into a more generic library that no longer targets only ActiveRecord models. It currently provides adapters for ActiveRecord and Mongoid, but it can be used for any Ruby class, no matter what parent class it has (if any).
Take a look at the README_FROM_VERSION_3_TO_4 for details how to switch from version 3.x to 4.0 of AASM.
Adding a state machine is as simple as including the AASM module and start defining states and events together with their transitions:
class Job
include AASM
aasm do
state :sleeping, :initial => true
state :running
state :cleaning
event :run do
transitions :from => :sleeping, :to => :running
end
event :clean do
transitions :from => :running, :to => :cleaning
end
event :sleep do
transitions :from => [:running, :cleaning], :to => :sleeping
end
end
end
This provides you with a couple of public methods for instances of the class Job
:
job = Job.new
job.sleeping? # => true
job.may_run? # => true
job.run
job.running? # => true
job.sleeping? # => false
job.may_run? # => false
job.run # => raises AASM::InvalidTransition
If you don't like exceptions and prefer a simple true
or false
as response, tell
AASM not to be whiny:
class Job
...
aasm :whiny_transitions => false do
...
end
end
job.running? # => true
job.may_run? # => false
job.run # => false
When firing an event, you can pass a block to the method, it will be called only if the transition succeeds :
job.run do
job.user.notify_job_ran # Will be called if job.may_run? is true
end
You can define a number of callbacks for your transitions. These methods will be called, when certain criteria are met, like entering a particular state:
class Job
include AASM
aasm do
state :sleeping, :initial => true, :before_enter => :do_something
state :running
event :run, :after => :notify_somebody do
transitions :from => :sleeping, :to => :running, :after => Proc.new {|*args| set_process(*args) } do
before do
log('Preparing to run')
end
end
end
event :sleep do
after do
...
end
error do |e|
...
end
transitions :from => :running, :to => :sleeping
end
end
def set_process(name)
...
end
def do_something
...
end
def notify_somebody(user)
...
end
end
In this case do_something
is called before actually entering the state sleeping
,
while notify_somebody
is called after the transition run
(from sleeping
to running
)
is finished.
Here you can see a list of all possible callbacks, together with their order of calling:
begin
event before
event guards
transition guards
old_state before_exit
old_state exit
transition after
new_state before_enter
new_state enter
...update state...
event success # if persist successful
old_state after_exit
new_state after_enter
event after
rescue
event error
end
Also, you can pass parameters to events:
job = Job.new
job.run(:running, :defragmentation)
In this case the set_process
would be called with :defragmentation
argument.
Note that when passing arguments to a state transition, the first argument must be the desired end state. In the above example, we wish to transition to :running
state and run the callback with :defragmentation
argument. You can also pass in nil
as the desired end state, and AASM will try to transition to the first end state defined for that event.
In case of an error during the event processing the error is rescued and passed to :error
callback, which can handle it or re-raise it for further propagation.
During the transition's :after
callback (and reliably only then) you can access the
originating state (the from-state) and the target state (the to state), like this:
def set_process(name)
logger.info "from #{aasm.from_state} to #{aasm.to_state}"
end
While running the callbacks you can easily retrieve the name of the event triggered
by using aasm.current_event
:
# taken the example callback from above
def do_something
puts "triggered #{aasm.current_event}"
end
and then
job = Job.new
# without bang
job.sleep # => triggered :sleep
# with bang
job.sleep! # => triggered :sleep!
Let's assume you want to allow particular transitions only if a defined condition is
given. For this you can set up a guard per transition, which will run before actually
running the transition. If the guard returns false
the transition will be
denied (raising AASM::InvalidTransition
or returning false
itself):
class Cleaner
include AASM
aasm do
state :idle, :initial => true
state :cleaning
event :clean do
transitions :from => :idle, :to => :cleaning, :guard => :cleaning_needed?
end
event :clean_if_needed do
transitions :from => :idle, :to => :cleaning do
guard do
cleaning_needed?
end
end
transitions :from => :idle, :to => :idle
end
end
def cleaning_needed?
false
end
end
job = Cleaner.new
job.may_clean? # => false
job.clean # => raises AASM::InvalidTransition
job.may_clean_if_needed? # => true
job.clean_if_needed! # idle
You can even provide a number of guards, which all have to succeed to proceed
def walked_the_dog?; ...; end
event :sleep do
transitions :from => :running, :to => :sleeping, :guards => [:cleaning_needed?, :walked_the_dog?]
end
If you want to provide guards for all transitions within an event, you can use event guards
event :sleep, :guards => [:walked_the_dog?] do
transitions :from => :running, :to => :sleeping, :guards => [:cleaning_needed?]
transitions :from => :cleaning, :to => :sleeping
end
If you prefer a more Ruby-like guard syntax, you can use if
and unless
as well:
event :clean do
transitions :from => :running, :to => :cleaning, :if => :cleaning_needed?
end
event :sleep do
transitions :from => :running, :to => :sleeping, :unless => :cleaning_needed?
end
end
In the event of having multiple transitions for an event, the first transition that successfully completes will stop other transitions in the same event from being processed.
require 'aasm'
class Job
include AASM
aasm do
state :stage1, :initial => true
state :stage2
state :stage3
state :completed
event :stage1_completed do
transitions from: :stage1, to: :stage3, guard: :stage2_completed?
transitions from: :stage1, to: :stage2
end
end
def stage2_completed?
true
end
end
job = Job.new
job.stage1_completed
job.aasm.current_state # stage3
AASM comes with support for ActiveRecord and allows automatical persisting of the object's state in the database.
class Job < ActiveRecord::Base
include AASM
aasm do # default column: aasm_state
state :sleeping, :initial => true
state :running
event :run do
transitions :from => :sleeping, :to => :running
end
event :sleep do
transitions :from => :running, :to => :sleeping
end
end
end
You can tell AASM to auto-save the object or leave it unsaved
job = Job.new
job.run # not saved
job.run! # saved
Saving includes running all validations on the Job
class. If you want make sure
the state gets saved without running validations (and thereby maybe persisting an
invalid object state), simply tell AASM to skip the validations. Be aware, that
when skipping validations, only the state column will be updated in the database
(just like ActiveRecord change_column
is working).
class Job < ActiveRecord::Base
include AASM
aasm :skip_validation_on_save => true do
state :sleeping, :initial => true
state :running
event :run do
transitions :from => :sleeping, :to => :running
end
event :sleep do
transitions :from => :running, :to => :sleeping
end
end
end
If you want to make sure that the AASM column for storing the state is not directly assigned, configure AASM to not allow direct assignment, like this:
class Job < ActiveRecord::Base
include AASM
aasm :no_direct_assignment => true do
state :sleeping, :initial => true
state :running
event :run do
transitions :from => :sleeping, :to => :running
end
end
end
resulting in this:
job = Job.create
job.aasm_state # => 'sleeping'
job.aasm_state = :running # => raises AASM::NoDirectAssignmentError
job.aasm_state # => 'sleeping'
You can use enumerations in Rails 4.1+ for your state column:
class Job < ActiveRecord::Base
include AASM
enum state: {
sleeping: 5,
running: 99
}
aasm :column => :state, :enum => true do
state :sleeping, :initial => true
state :running
end
end
You can explicitly pass the name of the method which provides access
to the enumeration mapping as a value of enum
, or you can simply
set it to true
. In the latter case AASM will try to use
pluralized column name to access possible enum states.
Furthermore, if your column has integer type (which is normally the
case when you're working with Rails enums), you can omit :enum
setting --- AASM auto-detects this situation and enabled enum
support. If anything goes wrong, you can disable enum functionality
and fall back to the default behavior by setting :enum
to false
.
AASM also supports Sequel besides ActiveRecord and Mongoid.
class Job < Sequel::Model
include AASM
aasm do # default column: aasm_state
...
end
end
However it's not yet as feature complete as ActiveRecord. For example, there are scopes defined yet. See Automatic Scopes.
AASM also supports persistence to Mongodb if you're using Mongoid. Make sure to include Mongoid::Document before you include AASM.
class Job
include Mongoid::Document
include AASM
field :aasm_state
aasm do
...
end
end
AASM will automatically create scope methods for each state in the model.
class Job < ActiveRecord::Base
include AASM
aasm do
state :sleeping, :initial => true
state :running
state :cleaning
end
def self.sleeping
"This method name is already in use"
end
end
class JobsController < ApplicationController
def index
@running_jobs = Job.running
@recent_cleaning_jobs = Job.cleaning.where('created_at >= ?', 3.days.ago)
# @sleeping_jobs = Job.sleeping #=> "This method name is already in use"
end
end
If you don't need scopes (or simply don't want them), disable their creation when
defining the AASM
states, like this:
class Job < ActiveRecord::Base
include AASM
aasm :create_scopes => false do
state :sleeping, :initial => true
state :running
state :cleaning
end
end
Since version 3.0.13 AASM supports ActiveRecord transactions. So whenever a transition callback or the state update fails, all changes to any database record are rolled back. Mongodb does not support transactions.
If you want to make sure a depending action happens only after the transaction is committed,
use the after_commit
callback, like this:
class Job < ActiveRecord::Base
include AASM
aasm do
state :sleeping, :initial => true
state :running
event :run, :after_commit => :notify_about_running_job do
transitions :from => :sleeping, :to => :running
end
end
def notify_about_running_job
...
end
end
If you want to encapsulate state changes within an own transaction, the behavior
of this nested transaction might be confusing. Take a look at
ActiveRecord Nested Transactions
if you want to know more about this. Nevertheless, AASM by default requires a new transaction
transaction(:requires_new => true)
. You can override this behavior by changing
the configuration
class Job < ActiveRecord::Base
include AASM
aasm :requires_new_transaction => false do
...
end
...
end
which then leads to transaction(:requires_new => false)
, the Rails default.
As a default AASM uses the column aasm_state
to store the states. You can override
this by defining your favorite column name, using :column
like this:
class Job < ActiveRecord::Base
include AASM
aasm :column => 'my_state' do
...
end
end
Whatever column name is used, make sure to add a migration to provide this column
(of type string
):
class AddJobState < ActiveRecord::Migration
def self.up
add_column :jobs, :aasm_state, :string
end
def self.down
remove_column :jobs, :aasm_state
end
end
AASM supports a couple of methods to find out which states or events are provided or permitted.
Given this Job
class:
# show all states
Job.aasm.states.map(&:name)
=> [:sleeping, :running, :cleaning]
job = Job.new
# show all permitted (reachable / possible) states
job.aasm.states(:permitted => true).map(&:name)
=> [:running]
job.run
job.aasm.states(:permitted => true).map(&:name)
=> [:cleaning, :sleeping]
# show all possible (triggerable) events (allowed by transitions)
job.aasm.events.map(&:name)
=> [:sleep]
% gem install aasm
# Gemfile
gem 'aasm'
% rake build
% sudo gem install pkg/aasm-x.y.z.gem
Take a look at the CHANGELOG for details about recent changes to the current version.
Feel free to
- create an issue on GitHub
- ask a question on StackOverflow (tag with
aasm
) - send us a tweet @aasm
- Scott Barron (2006–2009, original author)
- Travis Tilley (2009–2011)
- Thorsten Böttger (since 2011)
This software is provided "as is" and without any express or implied warranties, including, without limitation, the implied warranties of merchantibility and fitness for a particular purpose.
Copyright (c) 2006-2015 Scott Barron
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.