本项目每月自动从 arXiv 获取最新的论文,基于关键词进行筛选。
点击 'Watch' 按钮可以接收每月自动推送的邮件通知。
本次更新执行命令
D:\a\MyAutoPapers\MyAutoPapers\target\release\my_auto_papers.exe --keywords=
efficient RL,
partial observable markov decision process/pomdp,sparse reward reinforcement learning,
casual RL/counterfactual RL/casual reinforcement learning,
causal inference/causal discovery/counterfactual reasoning,
video super resolution,
knowledge graph/knowledge distillation/knowledge representation/knowledge transfer/knowledge embedding,
combinatorial game theory/xiangqi/chinese chess,
code llm,
speech recognition,
zero shot tracking/few shot tracking/pose tracking/pose estimation,
text to 3d/image to 3d/text to texture,
automated theorem proving/interactive theorem proving/formal verification
--exclude-keywords=multi-agent,multiagent --per-keyword-max-result=8
参数详解
- 关键词:
efficient RL,partial observable markov decision process/pomdp,sparse reward reinforcement learning,casual RL/counterfactual RL/casual reinforcement learning,causal inference/causal discovery/counterfactual reasoning,video super resolution,knowledge graph/knowledge distillation/knowledge representation/knowledge transfer/knowledge embedding,combinatorial game theory/xiangqi/chinese chess,code llm,speech recognition,zero shot tracking/few shot tracking/pose tracking/pose estimation,text to 3d/image to 3d/text to texture,automated theorem proving/interactive theorem proving/formal verification - 排除关键词:
multi-agent,multiagent - 每关键词最大结果:
8 - 目标领域:
cs,stat - 每关键词重试次数:
3
| 序号 | 标题 | 日期 | 摘要 |
|---|---|---|---|
| 1 | ReSpec: Towards Optimizing Speculative Decoding in Reinforcement Learning Systems | 2025-10-30 | 展开Adapting large language models (LLMs) via reinforcement learning (RL) is often bottlenecked by the generation stage, which can consume over 75% of the training time. Speculative decoding (SD) accelerates autoregressive generation in serving systems, but its behavior under RL training remains largely unexplored. We identify three critical gaps that hinder the naive integration of SD into RL systems: diminishing speedups at large batch sizes, drafter staleness under continual actor updates, and drafter-induced policy degradation. To address these gaps, we present ReSpec, a system that adapts SD to RL through three complementary mechanisms: dynamically tuning SD configurations, evolving the drafter via knowledge distillation, and weighting updates by rollout rewards. On Qwen models (3B--14B), ReSpec achieves up to 4.5x speedup while preserving reward convergence and training stability, providing a practical solution for efficient RL-based LLM adaptation. |
| 2 | $π_\texttt{RL}$: Online RL Fine-tuning for Flow-based Vision-Language-Action Models | 2025-10-29 | 展开Vision-Language-Action (VLA) models enable robots to understand and perform complex tasks from multimodal input. Although recent work explores using reinforcement learning (RL) to automate the laborious data collection process in scaling supervised fine-tuning (SFT), applying large-scale RL to flow-based VLAs (e.g., |
| 3 | RLBoost: Harvesting Preemptible Resources for Cost-Efficient Reinforcement Learning on LLMs | 2025-10-22 | 展开Reinforcement learning (RL) has become essential for unlocking advanced reasoning capabilities in large language models (LLMs). RL workflows involve interleaving rollout and training stages with fundamentally different resource requirements. Rollout typically dominates overall execution time, yet scales efficiently through multiple independent instances. In contrast, training requires tightly-coupled GPUs with full-mesh communication. Existing RL frameworks fall into two categories: co-located and disaggregated architectures. Co-located ones fail to address this resource tension by forcing both stages to share the same GPUs. Disaggregated architectures, without modifications of well-established RL algorithms, suffer from resource under-utilization. Meanwhile, preemptible GPU resources, i.e., spot instances on public clouds and spare capacity in production clusters, present significant cost-saving opportunities for accelerating RL workflows, if efficiently harvested for rollout. In this paper, we present RLBoost, a systematic solution for cost-efficient RL training that harvests preemptible GPU resources. Our key insight is that rollout's stateless and embarrassingly parallel nature aligns perfectly with preemptible and often fragmented resources. To efficiently utilize these resources despite frequent and unpredictable availability changes, RLBoost adopts a hybrid architecture with three key techniques: (1) adaptive rollout offload to dynamically adjust workloads on the reserved (on-demand) cluster, (2) pull-based weight transfer that quickly provisions newly available instances, and (3) token-level response collection and migration for efficient preemption handling and continuous load balancing. Extensive experiments show RLBoost increases training throughput by 1.51x-1.97x while improving cost efficiency by 28%-49% compared to using only on-demand GPU resources. |
| 4 | Boundary-Guided Policy Optimization for Memory-efficient RL of Diffusion Large Language Models | 2025-10-13 | 展开A key challenge in applying reinforcement learning (RL) to diffusion large language models (dLLMs) lies in the intractability of their likelihood functions, which are essential for the RL objective, necessitating corresponding approximation in each training step. While existing methods approximate the log-likelihoods by their evidence lower bounds (ELBOs) via customized Monte Carlo (MC) sampling, the forward computational graphs of all MC samples need to be retained for the gradient computation of non-linear terms in the RL objective, resulting in significant memory overhead. This constraint restricts feasible sample sizes, leading to imprecise likelihood approximations and ultimately distorting the RL objective. To overcome this limitation, we propose \emph{Boundary-Guided Policy Optimization} (BGPO), a memory-efficient RL algorithm that maximizes a specially constructed lower bound of the ELBO-based objective. This lower bound is carefully designed to satisfy two key properties: (1) Linearity: it is formulated in a linear sum where each term depends only on a single MC sample, thereby enabling gradient accumulation across samples and ensuring constant memory usage; (2) Equivalence: Both the value and gradient of this lower bound are equal to those of the ELBO-based objective in on-policy training, making it also an effective approximation for the original RL objective. These properties allow BGPO to adopt a large MC sample size, resulting in more accurate likelihood approximations and improved RL objective estimation, which in turn leads to enhanced performance. Experiments show that BGPO significantly outperforms previous RL algorithms for dLLMs in math problem solving, code generation, and planning tasks. Our codes and models are available at \href{https://github.com/THU-KEG/BGPO}{https://github.com/THU-KEG/BGPO}. |
| 5 | Shuffle-R1: Efficient RL framework for Multimodal Large Language Models via Data-centric Dynamic Shuffle | 2025-08-07 | 展开Reinforcement learning (RL) has emerged as an effective post-training paradigm for enhancing the reasoning capabilities of multimodal large language model (MLLM). However, current RL pipelines often suffer from training inefficiencies caused by two underexplored issues: Advantage Collapsing, where most advantages in a batch concentrate near zero, and Rollout Silencing, where the proportion of rollouts contributing non-zero gradients diminishes over time. These issues lead to suboptimal gradient updates and hinder long-term learning efficiency. To address these issues, we propose Shuffle-R1, a simple yet principled framework that improves RL fine-tuning efficiency by dynamically restructuring trajectory sampling and batch composition. It introduces (1) Pairwise Trajectory Sampling, which selects high-contrast trajectories with large advantages to improve gradient signal quality, and (2) Advantage-based Trajectory Shuffle, which increases exposure of valuable rollouts through informed batch reshuffling. Experiments across multiple reasoning benchmarks show that our framework consistently outperforms strong RL baselines with minimal overhead. These results highlight the importance of data-centric adaptations for more efficient RL training in MLLM. |
| 6 | Video-RTS: Rethinking Reinforcement Learning and Test-Time Scaling for Efficient and Enhanced Video Reasoning | 2025-07-09 | 展开Despite advances in reinforcement learning (RL)-based video reasoning with large language models (LLMs), data collection and fine-tuning remain significant challenges. These methods often rely on large-scale supervised fine-tuning (SFT) with extensive video data and long Chain-of-Thought (CoT) annotations, making them costly and hard to scale. To address this, we present Video-RTS, a new approach to improve video reasoning capability with drastically improved data efficiency by combining data-efficient RL with a video-adaptive test-time scaling (TTS) strategy. Building on observations about the data scaling, we skip the resource-intensive SFT step and employ efficient pure-RL training with output-based rewards, requiring no additional annotations or extensive fine-tuning. Furthermore, to utilize computational resources more efficiently, we introduce a sparse-to-dense video TTS strategy that improves inference by iteratively adding frames based on output consistency. We validate our approach on multiple video reasoning benchmarks, showing that Video-RTS surpasses existing video reasoning models by 2.4% in accuracy using only 3.6% training samples. Specifically, Video-RTS achieves a 4.2% improvement on Video-Holmes, a recent and challenging video reasoning benchmark. Notably, our pure RL training and adaptive video TTS offer complementary strengths, enabling Video-RTS's strong reasoning performance. |
| 7 | When Can Model-Free Reinforcement Learning be Enough for Thinking? | 2025-06-20 | 展开Recent work on large language models has demonstrated the use of model-free reinforcement learning (RL) to train reasoning-like capabilities. The emergence of "thinking" through model-free RL is interesting as thinking actions neither produce reward nor change the external world state to one where the agent is more likely to get reward. This paper seeks to build a domain-independent understanding of when model-free RL will lead to such "thinking" as a strategy for reward maximization. To build this understanding, we first introduce a theoretical model which we call a thought Markov decision process (MDP). Thought MDPs minimally extend the classical MDP model to include an abstract notion of thought state and thought action. Using the thought MDP model, we prove the importance of policy initialization in determining whether or not thinking emerges and show formally that thought actions are equivalent to the agent choosing to perform a step of policy improvement before continuing to act. We then show that open-source LLMs satisfy the conditions that our theory predicts are necessary for model-free RL to produce thinking-like behavior. Finally, we hypothesize sufficient conditions that would enable thinking to be learned outside of language generation and introduce a toy domain where a combination of multi-task pre-training and designated thought actions enable more data-efficient RL compared to non-thinking agents. |
| 8 | Enhancing Efficiency and Exploration in Reinforcement Learning for LLMs | 2025-05-24 | 展开Reasoning large language models (LLMs) excel in complex tasks, which has drawn significant attention to reinforcement learning (RL) for LLMs. However, existing approaches allocate an equal number of rollouts to all questions during the RL process, which is inefficient. This inefficiency stems from the fact that training on simple questions yields limited gains, whereas more rollouts are needed for challenging questions to sample correct answers. Furthermore, while RL improves response precision, it limits the model's exploration ability, potentially resulting in a performance cap below that of the base model prior to RL. To address these issues, we propose a mechanism for dynamically allocating rollout budgets based on the difficulty of the problems, enabling more efficient RL training. Additionally, we introduce an adaptive dynamic temperature adjustment strategy to maintain the entropy at a stable level, thereby encouraging sufficient exploration. This enables LLMs to improve response precision while preserving their exploratory ability to uncover potential correct pathways. The code and data is available on: https://github.com/LiaoMengqi/E3-RL4LLMs |
| 序号 | 标题 | 日期 | 摘要 |
|---|---|---|---|
| 1 | Multi-Environment POMDPs: Discrete Model Uncertainty Under Partial Observability | 2025-10-27 | 展开Multi-environment POMDPs (ME-POMDPs) extend standard POMDPs with discrete model uncertainty. ME-POMDPs represent a finite set of POMDPs that share the same state, action, and observation spaces, but may arbitrarily vary in their transition, observation, and reward models. Such models arise, for instance, when multiple domain experts disagree on how to model a problem. The goal is to find a single policy that is robust against any choice of POMDP within the set, i.e., a policy that maximizes the worst-case reward across all POMDPs. We generalize and expand on existing work in the following way. First, we show that ME-POMDPs can be generalized to POMDPs with sets of initial beliefs, which we call adversarial-belief POMDPs (AB-POMDPs). Second, we show that any arbitrary ME-POMDP can be reduced to a ME-POMDP that only varies in its transition and reward functions or only in its observation and reward functions, while preserving (optimal) policies. We then devise exact and approximate (point-based) algorithms to compute robust policies for AB-POMDPs, and thus ME-POMDPs. We demonstrate that we can compute policies for standard POMDP benchmarks extended to the multi-environment setting. |
| 2 | ESCORT: Efficient Stein-variational and Sliced Consistency-Optimized Temporal Belief Representation for POMDPs | 2025-10-24 | 展开In Partially Observable Markov Decision Processes (POMDPs), maintaining and updating belief distributions over possible underlying states provides a principled way to summarize action-observation history for effective decision-making under uncertainty. As environments grow more realistic, belief distributions develop complexity that standard mathematical models cannot accurately capture, creating a fundamental challenge in maintaining representational accuracy. Despite advances in deep learning and probabilistic modeling, existing POMDP belief approximation methods fail to accurately represent complex uncertainty structures such as high-dimensional, multi-modal belief distributions, resulting in estimation errors that lead to suboptimal agent behaviors. To address this challenge, we present ESCORT (Efficient Stein-variational and sliced Consistency-Optimized Representation for Temporal beliefs), a particle-based framework for capturing complex, multi-modal distributions in high-dimensional belief spaces. ESCORT extends SVGD with two key innovations: correlation-aware projections that model dependencies between state dimensions, and temporal consistency constraints that stabilize updates while preserving correlation structures. This approach retains SVGD's attractive-repulsive particle dynamics while enabling accurate modeling of intricate correlation patterns. Unlike particle filters prone to degeneracy or parametric methods with fixed representational capacity, ESCORT dynamically adapts to belief landscape complexity without resampling or restrictive distributional assumptions. We demonstrate ESCORT's effectiveness through extensive evaluations on both POMDP domains and synthetic multi-modal distributions of varying dimensionality, where it consistently outperforms state-of-the-art methods in terms of belief approximation accuracy and downstream decision quality. |
| 3 | AdaDoS: Adaptive DoS Attack via Deep Adversarial Reinforcement Learning in SDN | 2025-10-23 | 展开Existing defence mechanisms have demonstrated significant effectiveness in mitigating rule-based Denial-of-Service (DoS) attacks, leveraging predefined signatures and static heuristics to identify and block malicious traffic. However, the emergence of AI-driven techniques presents new challenges to SDN security, potentially compromising the efficacy of existing defence mechanisms. In this paper, we introduce~AdaDoS, an adaptive attack model that disrupt network operations while evading detection by existing DoS-based detectors through adversarial reinforcement learning (RL). Specifically, AdaDoS models the problem as a competitive game between an attacker, whose goal is to obstruct network traffic without being detected, and a detector, which aims to identify malicious traffic. AdaDoS can solve this game by dynamically adjusting its attack strategy based on feedback from the SDN and the detector. Additionally, recognising that attackers typically have less information than defenders, AdaDoS formulates the DoS-like attack as a partially observed Markov decision process (POMDP), with the attacker having access only to delay information between attacker and victim nodes. We address this challenge with a novel reciprocal learning module, where the student agent, with limited observations, enhances its performance by learning from the teacher agent, who has full observational capabilities in the SDN environment. AdaDoS represents the first application of RL to develop DoS-like attack sequences, capable of adaptively evading both machine learning-based and rule-based DoS-like attack detectors. |
| 4 | The Landscape of Agentic Reinforcement Learning for LLMs: A Survey | 2025-09-02 | 展开The emergence of agentic reinforcement learning (Agentic RL) marks a paradigm shift from conventional reinforcement learning applied to large language models (LLM RL), reframing LLMs from passive sequence generators into autonomous, decision-making agents embedded in complex, dynamic worlds. This survey formalizes this conceptual shift by contrasting the degenerate single-step Markov Decision Processes (MDPs) of LLM-RL with the temporally extended, partially observable Markov decision processes (POMDPs) that define Agentic RL. Building on this foundation, we propose a comprehensive twofold taxonomy: one organized around core agentic capabilities, including planning, tool use, memory, reasoning, self-improvement, and perception, and the other around their applications across diverse task domains. Central to our thesis is that reinforcement learning serves as the critical mechanism for transforming these capabilities from static, heuristic modules into adaptive, robust agentic behavior. To support and accelerate future research, we consolidate the landscape of open-source environments, benchmarks, and frameworks into a practical compendium. By synthesizing over five hundred recent works, this survey charts the contours of this rapidly evolving field and highlights the opportunities and challenges that will shape the development of scalable, general-purpose AI agents. |
| 5 | Trust-Aware Assistance Seeking in Human-Supervised Autonomy | 2024-10-27 | 展开Our goal is to model and experimentally assess trust evolution to predict future beliefs and behaviors of human-robot teams in dynamic environments. Research suggests that maintaining trust among team members in a human-robot team is vital for successful team performance. Research suggests that trust is a multi-dimensional and latent entity that relates to past experiences and future actions in a complex manner. Employing a human-robot collaborative task, we design an optimal assistance-seeking strategy for the robot using a POMDP framework. In the task, the human supervises an autonomous mobile manipulator collecting objects in an environment. The supervisor's task is to ensure that the robot safely executes its task. The robot can either choose to attempt to collect the object or seek human assistance. The human supervisor actively monitors the robot's activities, offering assistance upon request, and intervening if they perceive the robot may fail. In this setting, human trust is the hidden state, and the primary objective is to optimize team performance. We execute two sets of human-robot interaction experiments. The data from the first experiment are used to estimate POMDP parameters, which are used to compute an optimal assistance-seeking policy evaluated in the second experiment. The estimated POMDP parameters reveal that, for most participants, human intervention is more probable when trust is low, particularly in high-complexity tasks. Our estimates suggest that the robot's action of asking for assistance in high-complexity tasks can positively impact human trust. Our experimental results show that the proposed trust-aware policy is better than an optimal trust-agnostic policy. By comparing model estimates of human trust, obtained using only behavioral data, with the collected self-reported trust values, we show that model estimates are isomorphic to self-reported responses. |
| 6 | Online POMDP Planning with Anytime Deterministic Optimality Guarantees | 2023-10-03 | 展开Decision-making under uncertainty is a critical aspect of many practical autonomous systems due to incomplete information. Partially Observable Markov Decision Processes (POMDPs) offer a mathematically principled framework for formulating decision-making problems under such conditions. However, finding an optimal solution for a POMDP is generally intractable. In recent years, there has been a significant progress of scaling approximate solvers from small to moderately sized problems, using online tree search solvers. Often, such approximate solvers are limited to probabilistic or asymptotic guarantees towards the optimal solution. In this paper, we derive a deterministic relationship for discrete POMDPs between an approximated and the optimal solution. We show that at any time, we can derive bounds that relate between the existing solution and the optimal one. We show that our derivations provide an avenue for a new set of algorithms and can be attached to existing algorithms that have a certain structure to provide them with deterministic guarantees with marginal computational overhead. In return, not only do we certify the solution quality, but we demonstrate that making a decision based on the deterministic guarantee may result in superior performance compared to the original algorithm without the deterministic certification. |
| 7 | Robust Fitted-Q-Evaluation and Iteration under Sequentially Exogenous Unobserved Confounders | 2023-02-01 | 展开Offline reinforcement learning is important in domains such as medicine, economics, and e-commerce where online experimentation is costly, dangerous or unethical, and where the true model is unknown. However, most methods assume all covariates used in the behavior policy's action decisions are observed. Though this assumption, sequential ignorability/unconfoundedness, likely does not hold in observational data, most of the data that accounts for selection into treatment may be observed, motivating sensitivity analysis. We study robust policy evaluation and policy optimization in the presence of sequentially-exogenous unobserved confounders under a sensitivity model. We propose and analyze orthogonalized robust fitted-Q-iteration that uses closed-form solutions of the robust Bellman operator to derive a loss minimization problem for the robust Q function, and adds a bias-correction to quantile estimation. Our algorithm enjoys the computational ease of fitted-Q-iteration and statistical improvements (reduced dependence on quantile estimation error) from orthogonalization. We provide sample complexity bounds, insights, and show effectiveness both in simulations and on real-world longitudinal healthcare data of treating sepsis. In particular, our model of sequential unobserved confounders yields an online Markov decision process, rather than partially observed Markov decision process: we illustrate how this can enable warm-starting optimistic reinforcement learning algorithms with valid robust bounds from observational data. |
| 序号 | 标题 | 日期 | 摘要 |
|---|---|---|---|
| 1 | What Fundamental Structure in Reward Functions Enables Efficient Sparse-Reward Learning? | 2025-09-04 | 展开Sparse-reward reinforcement learning (RL) remains fundamentally hard: without structure, any agent needs $\Omega( |
| 2 | LLM-Driven Intrinsic Motivation for Sparse Reward Reinforcement Learning | 2025-08-25 | 展开This paper explores the combination of two intrinsic motivation strategies to improve the efficiency of reinforcement learning (RL) agents in environments with extreme sparse rewards, where traditional learning struggles due to infrequent positive feedback. We propose integrating Variational State as Intrinsic Reward (VSIMR), which uses Variational AutoEncoders (VAEs) to reward state novelty, with an intrinsic reward approach derived from Large Language Models (LLMs). The LLMs leverage their pre-trained knowledge to generate reward signals based on environment and goal descriptions, guiding the agent. We implemented this combined approach with an Actor-Critic (A2C) agent in the MiniGrid DoorKey environment, a benchmark for sparse rewards. Our empirical results show that this combined strategy significantly increases agent performance and sampling efficiency compared to using each strategy individually or a standard A2C agent, which failed to learn. Analysis of learning curves indicates that the combination effectively complements different aspects of the environment and task: VSIMR drives exploration of new states, while the LLM-derived rewards facilitate progressive exploitation towards goals. |
| 3 | SuperRL: Reinforcement Learning with Supervision to Boost Language Model Reasoning | 2025-06-01 | 展开Large language models are increasingly used for complex reasoning tasks where high-quality offline data such as expert-annotated solutions and distilled reasoning traces are often available. However, in environments with sparse rewards, reinforcement learning struggles to sample successful trajectories, leading to inefficient learning. At the same time, these offline trajectories that represent correct reasoning paths are not utilized by standard on-policy reinforcement learning methods. We introduce SuperRL, a unified training framework that adaptively alternates between RL and SFT. Whenever every rollout for a given instance receives zero reward, indicating the absence of a learning signal, SuperRL falls back to SFT on the curated offline data. Extensive experiments across diverse reasoning benchmarks show that SuperRL surpasses vanilla RL by delivering higher sample efficiency, stronger generalization, and improved robustness under sparse rewards. |
| 4 | DISCOVER: Automated Curricula for Sparse-Reward Reinforcement Learning | 2025-05-26 | 展开Sparse-reward reinforcement learning (RL) can model a wide range of highly complex tasks. Solving sparse-reward tasks is RL's core premise, requiring efficient exploration coupled with long-horizon credit assignment, and overcoming these challenges is key for building self-improving agents with superhuman ability. Prior work commonly explores with the objective of solving many sparse-reward tasks, making exploration of individual high-dimensional, long-horizon tasks intractable. We argue that solving such challenging tasks requires solving simpler tasks that are relevant to the target task, i.e., whose achieval will teach the agent skills required for solving the target task. We demonstrate that this sense of direction, necessary for effective exploration, can be extracted from existing RL algorithms, without leveraging any prior information. To this end, we propose a method for directed sparse-reward goal-conditioned very long-horizon RL (DISCOVER), which selects exploratory goals in the direction of the target task. We connect DISCOVER to principled exploration in bandits, formally bounding the time until the target task becomes achievable in terms of the agent's initial distance to the target, but independent of the volume of the space of all tasks. We then perform a thorough evaluation in high-dimensional environments. We find that the directed goal selection of DISCOVER solves exploration problems that are beyond the reach of prior state-of-the-art exploration methods in RL. |
| 5 | STAR-R1: Spatial TrAnsformation Reasoning by Reinforcing Multimodal LLMs | 2025-05-21 | 展开Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across diverse tasks, yet they lag significantly behind humans in spatial reasoning. We investigate this gap through Transformation-Driven Visual Reasoning (TVR), a challenging task requiring identification of object transformations across images under varying viewpoints. While traditional Supervised Fine-Tuning (SFT) fails to generate coherent reasoning paths in cross-view settings, sparse-reward Reinforcement Learning (RL) suffers from inefficient exploration and slow convergence. To address these limitations, we propose STAR-R1, a novel framework that integrates a single-stage RL paradigm with a fine-grained reward mechanism tailored for TVR. Specifically, STAR-R1 rewards partial correctness while penalizing excessive enumeration and passive inaction, enabling efficient exploration and precise reasoning. Comprehensive evaluations demonstrate that STAR-R1 achieves state-of-the-art performance across all 11 metrics, outperforming SFT by 23% in cross-view scenarios. Further analysis reveals STAR-R1's anthropomorphic behavior and highlights its unique ability to compare all objects for improving spatial reasoning. Our work provides critical insights in advancing the research of MLLMs and reasoning models. The codes, model weights, and data will be publicly available at https://github.com/zongzhao23/STAR-R1. |
| 6 | Contextual Similarity Distillation: Ensemble Uncertainties with a Single Model | 2025-03-14 | 展开Uncertainty quantification is a critical aspect of reinforcement learning and deep learning, with numerous applications ranging from efficient exploration and stable offline reinforcement learning to outlier detection in medical diagnostics. The scale of modern neural networks, however, complicates the use of many theoretically well-motivated approaches such as full Bayesian inference. Approximate methods like deep ensembles can provide reliable uncertainty estimates but still remain computationally expensive. In this work, we propose contextual similarity distillation, a novel approach that explicitly estimates the variance of an ensemble of deep neural networks with a single model, without ever learning or evaluating such an ensemble in the first place. Our method builds on the predictable learning dynamics of wide neural networks, governed by the neural tangent kernel, to derive an efficient approximation of the predictive variance of an infinite ensemble. Specifically, we reinterpret the computation of ensemble variance as a supervised regression problem with kernel similarities as regression targets. The resulting model can estimate predictive variance at inference time with a single forward pass, and can make use of unlabeled target-domain data or data augmentations to refine its uncertainty estimates. We empirically validate our method across a variety of out-of-distribution detection benchmarks and sparse-reward reinforcement learning environments. We find that our single-model method performs competitively and sometimes superior to ensemble-based baselines and serves as a reliable signal for efficient exploration. These results, we believe, position contextual similarity distillation as a principled and scalable alternative for uncertainty quantification in reinforcement learning and general deep learning. |
| 7 | Hedging with Sparse Reward Reinforcement Learning | 2025-03-06 | 展开Derivatives, as a critical class of financial instruments, isolate and trade the price attributes of risk assets such as stocks, commodities, and indices, aiding risk management and enhancing market efficiency. However, traditional hedging models, constrained by assumptions such as continuous trading and zero transaction costs, fail to satisfy risk control requirements in complex and uncertain real-world markets. With advances in computing technology and deep learning, data-driven trading strategies are becoming increasingly prevalent. This thesis proposes a derivatives hedging framework integrating deep learning and reinforcement learning. The framework comprises a probabilistic forecasting model and a hedging agent, enabling market probability prediction, derivative pricing, and hedging. Specifically, we design a spatiotemporal attention-based probabilistic financial time series forecasting Transformer to address the scarcity of derivatives hedging data. A low-rank attention mechanism compresses high-dimensional assets into a low-dimensional latent space, capturing nonlinear asset relationships. The Transformer models sequential dependencies within this latent space, improving market probability forecasts and constructing an online training environment for downstream hedging tasks. Additionally, we incorporate generalized geometric Brownian motion to develop a risk-neutral pricing approach for derivatives. We model derivatives hedging as a reinforcement learning problem with sparse rewards and propose a behavior cloning-based recurrent proximal policy optimization (BC-RPPO) algorithm. This pretraining-finetuning framework significantly enhances the hedging agent's performance. Numerical experiments in the U.S. and Chinese financial markets demonstrate our method's superiority over traditional approaches. |
| 8 | Dense Dynamics-Aware Reward Synthesis: Integrating Prior Experience with Demonstrations | 2024-12-02 | 展开Many continuous control problems can be formulated as sparse-reward reinforcement learning (RL) tasks. In principle, online RL methods can automatically explore the state space to solve each new task. However, discovering sequences of actions that lead to a non-zero reward becomes exponentially more difficult as the task horizon increases. Manually shaping rewards can accelerate learning for a fixed task, but it is an arduous process that must be repeated for each new environment. We introduce a systematic reward-shaping framework that distills the information contained in 1) a task-agnostic prior data set and 2) a small number of task-specific expert demonstrations, and then uses these priors to synthesize dense dynamics-aware rewards for the given task. This supervision substantially accelerates learning in our experiments, and we provide analysis demonstrating how the approach can effectively guide online learning agents to faraway goals. |
| 序号 | 标题 | 日期 | 摘要 |
|---|---|---|---|
| 1 | Should I Trust You? Detecting Deception in Negotiations using Counterfactual RL | 2025-02-18 | 展开An increasingly common socio-technical problem is people being taken in by offers that sound ``too good to be true'', where persuasion and trust shape decision-making. This paper investigates how \abr{ai} can help detect these deceptive scenarios. We analyze how humans strategically deceive each other in \textit{Diplomacy}, a board game that requires both natural language communication and strategic reasoning. This requires extracting logical forms of proposed agreements in player communications and computing the relative rewards of the proposal using agents' value functions. Combined with text-based features, this can improve our deception detection. Our method detects human deception with a high precision when compared to a Large Language Model approach that flags many true messages as deceptive. Future human-\abr{ai} interaction tools can build on our methods for deception detection by triggering \textit{friction} to give users a chance of interrogating suspicious proposals. |
| 2 | Sample-Efficient Reinforcement Learning via Counterfactual-Based Data Augmentation | 2020-12-16 | 展开Reinforcement learning (RL) algorithms usually require a substantial amount of interaction data and perform well only for specific tasks in a fixed environment. In some scenarios such as healthcare, however, usually only few records are available for each patient, and patients may show different responses to the same treatment, impeding the application of current RL algorithms to learn optimal policies. To address the issues of mechanism heterogeneity and related data scarcity, we propose a data-efficient RL algorithm that exploits structural causal models (SCMs) to model the state dynamics, which are estimated by leveraging both commonalities and differences across subjects. The learned SCM enables us to counterfactually reason what would have happened had another treatment been taken. It helps avoid real (possibly risky) exploration and mitigates the issue that limited experiences lead to biased policies. We propose counterfactual RL algorithms to learn both population-level and individual-level policies. We show that counterfactual outcomes are identifiable under mild conditions and that Q- learning on the counterfactual-based augmented data set converges to the optimal value function. Experimental results on synthetic and real-world data demonstrate the efficacy of the proposed approach. |
| 序号 | 标题 | 日期 | 摘要 |
|---|---|---|---|
| 1 | A Unified Theory for Causal Inference: Direct Debiased Machine Learning via Bregman-Riesz Regression | 2025-10-30 | 展开This note introduces a unified theory for causal inference that integrates Riesz regression, covariate balancing, density-ratio estimation (DRE), targeted maximum likelihood estimation (TMLE), and the matching estimator in average treatment effect (ATE) estimation. In ATE estimation, the balancing weights and the regression functions of the outcome play important roles, where the balancing weights are referred to as the Riesz representer, bias-correction term, and clever covariates, depending on the context. Riesz regression, covariate balancing, DRE, and the matching estimator are methods for estimating the balancing weights, where Riesz regression is essentially equivalent to DRE in the ATE context, the matching estimator is a special case of DRE, and DRE is in a dual relationship with covariate balancing. TMLE is a method for constructing regression function estimators such that the leading bias term becomes zero. Nearest Neighbor Matching is equivalent to Least Squares Density Ratio Estimation and Riesz Regression. |
| 2 | Discovering Causal Relationships Between Time Series With Spatial Structure | 2025-10-30 | 展开Causal discovery is the subfield of causal inference concerned with estimating the structure of cause-and-effect relationships in a system of interrelated variables, as opposed to quantifying the strength of causal effects. As interest in causal discovery builds in fields such as ecology, public health, and environmental sciences where data is regularly collected with spatial and temporal structures, approaches must evolve to manage autocorrelation and complex confounding. As it stands, the few proposed causal discovery algorithms for spatiotemporal data require summarizing across locations, ignore spatial autocorrelation, and/or scale poorly to high dimensions. Here, we introduce our developing framework that extends time-series causal discovery to systems with spatial structure, building upon work on causal discovery across contexts and methods for handling spatial confounding in causal effect estimation. We close by outlining remaining gaps in the literature and directions for future research. |
| 3 | Representation-Level Counterfactual Calibration for Debiased Zero-Shot Recognition | 2025-10-30 | 展开Object-context shortcuts remain a persistent challenge in vision-language models, undermining zero-shot reliability when test-time scenes differ from familiar training co-occurrences. We recast this issue as a causal inference problem and ask: Would the prediction remain if the object appeared in a different environment? To answer this at inference time, we estimate object and background expectations within CLIP's representation space, and synthesize counterfactual embeddings by recombining object features with diverse alternative contexts sampled from external datasets, batch neighbors, or text-derived descriptions. By estimating the Total Direct Effect and simulating intervention, we further subtract background-only activation, preserving beneficial object-context interactions while mitigating hallucinated scores. Without retraining or prompt design, our method substantially improves both worst-group and average accuracy on context-sensitive benchmarks, establishing a new zero-shot state of the art. Beyond performance, our framework provides a lightweight representation-level counterfactual approach, offering a practical causal avenue for debiased and reliable multimodal reasoning. |
| 4 | Linear Causal Discovery with Interventional Constraints | 2025-10-30 | 展开Incorporating causal knowledge and mechanisms is essential for refining causal models and improving downstream tasks such as designing new treatments. In this paper, we introduce a novel concept in causal discovery, termed interventional constraints, which differs fundamentally from interventional data. While interventional data require direct perturbations of variables, interventional constraints encode high-level causal knowledge in the form of inequality constraints on causal effects. For instance, in the Sachs dataset (Sachs et al.\ 2005), Akt has been shown to be activated by PIP3, meaning PIP3 exerts a positive causal effect on Akt. Existing causal discovery methods allow enforcing structural constraints (for example, requiring a causal path from PIP3 to Akt), but they may still produce incorrect causal conclusions such as learning that "PIP3 inhibits Akt". Interventional constraints bridge this gap by explicitly constraining the total causal effect between variable pairs, ensuring learned models respect known causal influences. To formalize interventional constraints, we propose a metric to quantify total causal effects for linear causal models and formulate the problem as a constrained optimization task, solved using a two-stage constrained optimization method. We evaluate our approach on real-world datasets and demonstrate that integrating interventional constraints not only improves model accuracy and ensures consistency with established findings, making models more explainable, but also facilitates the discovery of new causal relationships that would otherwise be costly to identify. |
| 5 | Causal Inference with Groupwise Matching | 2025-10-30 | 展开This paper examines methods of causal inference based on groupwise matching when we observe multiple large groups of individuals over several periods. We formulate causal inference validity through a generalized matching condition, generalizing the parallel trend assumption in difference-in-differences designs. We show that difference-in-differences, synthetic control, and synthetic difference-in-differences designs are distinguished by the specific matching conditions that they invoke. Through regret analysis, we demonstrate that difference-in-differences and synthetic control with differencing are complementary; the former dominates the latter if and only if the latter's extrapolation error exceeds the former's matching error up to a term vanishing at the parametric rate. The analysis also reveals that synthetic control with differencing is equivalent to difference-in-differences when the parallel trend assumption holds for both the pre-treatment and post-treatment periods. We develop a statistical inference procedure based on synthetic control with differencing and present an empirical application demonstrating its usefulness. |
| 6 | Bias-Corrected Data Synthesis for Imbalanced Learning | 2025-10-30 | 展开Imbalanced data, where the positive samples represent only a small proportion compared to the negative samples, makes it challenging for classification problems to balance the false positive and false negative rates. A common approach to addressing the challenge involves generating synthetic data for the minority group and then training classification models with both observed and synthetic data. However, since the synthetic data depends on the observed data and fails to replicate the original data distribution accurately, prediction accuracy is reduced when the synthetic data is naively treated as the true data. In this paper, we address the bias introduced by synthetic data and provide consistent estimators for this bias by borrowing information from the majority group. We propose a bias correction procedure to mitigate the adverse effects of synthetic data, enhancing prediction accuracy while avoiding overfitting. This procedure is extended to broader scenarios with imbalanced data, such as imbalanced multi-task learning and causal inference. Theoretical properties, including bounds on bias estimation errors and improvements in prediction accuracy, are provided. Simulation results and data analysis on handwritten digit datasets demonstrate the effectiveness of our method. |
| 7 | Graph Distance Based on Cause-Effect Estimands with Latents | 2025-10-28 | 展开Causal discovery aims to recover graphs that represent causal relations among given variables from observations, and new methods are constantly being proposed. Increasingly, the community raises questions about how much progress is made, because properly evaluating discovered graphs remains notoriously difficult, particularly under latent confounding. We propose a graph distance measure for acyclic directed mixed graphs (ADMGs) based on the downstream task of cause-effect estimation under unobserved confounding. Our approach uses identification via fixing and a symbolic verifier to quantify how graph differences distort cause-effect estimands for different treatment-outcome pairs. We analyze the behavior of the measure under different graph perturbations and compare it against existing distance metrics. |
| 8 | Causal Ordering for Structure Learning From Time Series | 2025-10-28 | 展开Predicting causal structure from time series data is crucial for understanding complex phenomena in physiology, brain connectivity, climate dynamics, and socio-economic behaviour. Causal discovery in time series is hindered by the combinatorial complexity of identifying true causal relationships, especially as the number of variables and time points grow. A common approach to simplify the task is the so-called ordering-based methods. Traditional ordering methods inherently limit the representational capacity of the resulting model. In this work, we fix this issue by leveraging multiple valid causal orderings, instead of a single one as standard practice. We propose DOTS (Diffusion Ordered Temporal Structure), using diffusion-based causal discovery for temporal data. By integrating multiple orderings, DOTS effectively recovers the transitive closure of the underlying directed acyclic graph, mitigating spurious artifacts inherent in single-ordering approaches. We formalise the problem under standard assumptions such as stationarity and the additive noise model, and leverage score matching with diffusion processes to enable efficient Hessian estimation. Extensive experiments validate the approach. Empirical evaluations on synthetic and real-world datasets demonstrate that DOTS outperforms state-of-the-art baselines, offering a scalable and robust approach to temporal causal discovery. On synthetic benchmarks ( |
| 9 | Decentralized Causal Discovery using Judo Calculus | 2025-10-27 | 展开We describe a theory and implementation of an intuitionistic decentralized framework for causal discovery using judo calculus, which is formally defined as j-stable causal inference using j-do-calculus in a topos of sheaves. In real-world applications -- from biology to medicine and social science -- causal effects depend on regime (age, country, dose, genotype, or lab protocol). Our proposed judo calculus formalizes this context dependence formally as local truth: a causal claim is proven true on a cover of regimes, not everywhere at once. The Lawvere-Tierney modal operator j chooses which regimes are relevant; j-stability means the claim holds constructively and consistently across that family. We describe an algorithmic and implementation framework for judo calculus, combining it with standard score-based, constraint-based, and gradient-based causal discovery methods. We describe experimental results on a range of domains, from synthetic to real-world datasets from biology and economics. Our experimental results show the computational efficiency gained by the decentralized nature of sheaf-theoretic causal discovery, as well as improved performance over classical causal discovery methods. |
| 10 | Group Interventions on Deep Networks for Causal Discovery in Subsystems | 2025-10-27 | 展开Causal discovery uncovers complex relationships between variables, enhancing predictions, decision-making, and insights into real-world systems, especially in nonlinear multivariate time series. However, most existing methods primarily focus on pairwise cause-effect relationships, overlooking interactions among groups of variables, i.e., subsystems and their collective causal influence. In this study, we introduce gCDMI, a novel multi-group causal discovery method that leverages group-level interventions on trained deep neural networks and employs model invariance testing to infer causal relationships. Our approach involves three key steps. First, we use deep learning to jointly model the structural relationships among groups of all time series. Second, we apply group-wise interventions to the trained model. Finally, we conduct model invariance testing to determine the presence of causal links among variable groups. We evaluate our method on simulated datasets, demonstrating its superior performance in identifying group-level causal relationships compared to existing methods. Additionally, we validate our approach on real-world datasets, including brain networks and climate ecosystems. Our results highlight that applying group-level interventions to deep learning models, combined with invariance testing, can effectively reveal complex causal structures, offering valuable insights for domains such as neuroscience and climate science. |
| 11 | Beyond Prompt Engineering: Neuro-Symbolic-Causal Architecture for Robust Multi-Objective AI Agents | 2025-10-27 | 展开Large language models show promise as autonomous decision-making agents, yet their deployment in high-stakes domains remains fraught with risk. Without architectural safeguards, LLM agents exhibit catastrophic brittleness: identical capabilities produce wildly different outcomes depending solely on prompt framing. We present Chimera, a neuro-symbolic-causal architecture that integrates three complementary components - an LLM strategist, a formally verified symbolic constraint engine, and a causal inference module for counterfactual reasoning. We benchmark Chimera against baseline architectures (LLM-only, LLM with symbolic constraints) across 52-week simulations in a realistic e-commerce environment featuring price elasticity, trust dynamics, and seasonal demand. Under organizational biases toward either volume or margin optimization, LLM-only agents fail catastrophically (total loss of $99K in volume scenarios) or destroy brand trust (-48.6% in margin scenarios). Adding symbolic constraints prevents disasters but achieves only 43-87% of Chimera's profit. Chimera consistently delivers the highest returns ($1.52M and $1.96M respectively, some cases +$2.2M) while improving brand trust (+1.8% and +10.8%, some cases +20.86%), demonstrating prompt-agnostic robustness. Our TLA+ formal verification proves zero constraint violations across all scenarios. These results establish that architectural design not prompt engineering determines the reliability of autonomous agents in production environments. We provide open-source implementations and interactive demonstrations for reproducibility. |
| 12 | A Hybrid Enumeration Framework for Optimal Counterfactual Generation in Post-Acute COVID-19 Heart Failure | 2025-10-21 | 展开Counterfactual inference provides a mathematical framework for reasoning about hypothetical outcomes under alternative interventions, bridging causal reasoning and predictive modeling. We present a counterfactual inference framework for individualized risk estimation and intervention analysis, illustrated through a clinical application to post-acute sequelae of COVID-19 (PASC) among patients with pre-existing heart failure (HF). Using longitudinal diagnosis, laboratory, and medication data from a large health-system cohort, we integrate regularized predictive modeling with counterfactual search to identify actionable pathways to PASC-related HF hospital admissions. The framework combines exact enumeration with optimization-based methods, including the Nearest Instance Counterfactual Explanations (NICE) and Multi-Objective Counterfactuals (MOC) algorithms, to efficiently explore high-dimensional intervention spaces. Applied to more than 2700 individuals with confirmed SARS-CoV-2 infection and prior HF, the model achieved strong discriminative performance (AUROC: 0.88, 95% CI: 0.84-0.91) and generated interpretable, patient-specific counterfactuals that quantify how modifying comorbidity patterns or treatment factors could alter predicted outcomes. This work demonstrates how counterfactual reasoning can be formalized as an optimization problem over predictive functions, offering a rigorous, interpretable, and computationally efficient approach to personalized inference in complex biomedical systems. |
| 13 | Counterfactual Reasoning for Steerable Pluralistic Value Alignment of Large Language Models | 2025-10-21 | 展开As large language models (LLMs) become increasingly integrated into applications serving users across diverse cultures, communities and demographics, it is critical to align LLMs with pluralistic human values beyond average principles (e.g., HHH). In psychological and social value theories such as Schwartz's Value Theory, pluralistic values are represented by multiple value dimensions paired with various priorities. However, existing methods encounter two challenges when aligning with such fine-grained value objectives: 1) they often treat multiple values as independent and equally important, ignoring their interdependence and relative priorities (value complexity); 2) they struggle to precisely control nuanced value priorities, especially those underrepresented ones (value steerability). To handle these challenges, we propose COUPLE, a COUnterfactual reasoning framework for PLuralistic valuE alignment. It introduces a structural causal model (SCM) to feature complex interdependency and prioritization among features, as well as the causal relationship between high-level value dimensions and behaviors. Moreover, it applies counterfactual reasoning to generate outputs aligned with any desired value objectives. Benefitting from explicit causal modeling, COUPLE also provides better interpretability. We evaluate COUPLE on two datasets with different value systems and demonstrate that COUPLE advances other baselines across diverse types of value objectives. |
| 14 | CausalTrace: A Neurosymbolic Causal Analysis Agent for Smart Manufacturing | 2025-10-14 | 展开Modern manufacturing environments demand not only accurate predictions but also interpretable insights to process anomalies, root causes, and potential interventions. Existing AI systems often function as isolated black boxes, lacking the seamless integration of prediction, explanation, and causal reasoning required for a unified decision-support solution. This fragmentation limits their trustworthiness and practical utility in high-stakes industrial environments. In this work, we present CausalTrace, a neurosymbolic causal analysis module integrated into the SmartPilot industrial CoPilot. CausalTrace performs data-driven causal analysis enriched by industrial ontologies and knowledge graphs, including advanced functions such as causal discovery, counterfactual reasoning, and root cause analysis (RCA). It supports real-time operator interaction and is designed to complement existing agents by offering transparent, explainable decision support. We conducted a comprehensive evaluation of CausalTrace using multiple causal assessment methods and the C3AN framework (i.e. Custom, Compact, Composite AI with Neurosymbolic Integration), which spans principles of robustness, intelligence, and trustworthiness. In an academic rocket assembly testbed, CausalTrace achieved substantial agreement with domain experts (ROUGE-1: 0.91 in ontology QA) and strong RCA performance (MAP@3: 94%, PR@2: 97%, MRR: 0.92, Jaccard: 0.92). It also attained 4.59/5 in the C3AN evaluation, demonstrating precision and reliability for live deployment. |
| 15 | GCVAMD: A Modified CausalVAE Model for Causal Age-related Macular Degeneration Risk Factor Detection and Prediction | 2025-10-03 | 展开Age Related Macular Degeneration(AMD) has been one of the most leading causes of permanent vision impairment in ophthalmology. Though treatments, such as anti VEGF drugs or photodynamic therapies, were developed to slow down the degenerative process of AMD, there is still no specific cure to reverse vision loss caused by AMD. Thus, for AMD, detecting existence of risk factors of AMD or AMD itself within the patient retina in early stages is a crucial task to reduce the possibility of vision impairment. Apart from traditional approaches, deep learning based methods, especially attention mechanism based CNNs and GradCAM based XAI analysis on OCT scans, exhibited successful performance in distinguishing AMD retina from normal retinas, making it possible to use AI driven models to aid medical diagnosis and analysis by ophthalmologists regarding AMD. However, though having significant success, previous works mostly focused on prediction performance itself, not pathologies or underlying causal mechanisms of AMD, which can prohibit intervention analysis on specific factors or even lead to less reliable decisions. Thus, this paper introduces a novel causal AMD analysis model: GCVAMD, which incorporates a modified CausalVAE approach that can extract latent causal factors from only raw OCT images. By considering causality in AMD detection, GCVAMD enables causal inference such as treatment simulation or intervention analysis regarding major risk factors: drusen and neovascularization, while returning informative latent causal features that can enhance downstream tasks. Results show that through GCVAMD, drusen status and neovascularization status can be identified with AMD causal mechanisms in GCVAMD latent spaces, which can in turn be used for various tasks from AMD detection(classification) to intervention analysis. |
| 16 | Chiseling: Powerful and Valid Subgroup Selection via Interactive Machine Learning | 2025-09-23 | 展开In regression and causal inference, controlled subgroup selection aims to identify, with inferential guarantees, a subgroup (defined as a subset of the covariate space) on which the average response or treatment effect is above a given threshold. E.g., in a clinical trial, it may be of interest to find a subgroup with a positive average treatment effect. However, existing methods either lack inferential guarantees, heavily restrict the search for the subgroup, or sacrifice efficiency by naive data splitting. We propose a novel framework called chiseling that allows the analyst to interactively refine and test a candidate subgroup by iteratively shrinking it. The sole restriction is that the shrinkage direction only depends on the points outside the current subgroup, but otherwise the analyst may leverage any prior information or machine learning algorithm. Despite this flexibility, chiseling controls the probability that the discovered subgroup is null (e.g., has a non-positive average treatment effect) under minimal assumptions: for example, in randomized experiments, this inferential validity guarantee holds under only bounded moment conditions. When applied to a variety of simulated datasets and a real survey experiment, chiseling identifies substantially better subgroups than existing methods with inferential guarantees. |
| 17 | Revealing Multimodal Causality with Large Language Models | 2025-09-22 | 展开Uncovering cause-and-effect mechanisms from data is fundamental to scientific progress. While large language models (LLMs) show promise for enhancing causal discovery (CD) from unstructured data, their application to the increasingly prevalent multimodal setting remains a critical challenge. Even with the advent of multimodal LLMs (MLLMs), their efficacy in multimodal CD is hindered by two primary limitations: (1) difficulty in exploring intra- and inter-modal interactions for comprehensive causal variable identification; and (2) insufficiency to handle structural ambiguities with purely observational data. To address these challenges, we propose MLLM-CD, a novel framework for multimodal causal discovery from unstructured data. It consists of three key components: (1) a novel contrastive factor discovery module to identify genuine multimodal factors based on the interactions explored from contrastive sample pairs; (2) a statistical causal structure discovery module to infer causal relationships among discovered factors; and (3) an iterative multimodal counterfactual reasoning module to refine the discovery outcomes iteratively by incorporating the world knowledge and reasoning capabilities of MLLMs. Extensive experiments on both synthetic and real-world datasets demonstrate the effectiveness of the proposed MLLM-CD in revealing genuine factors and causal relationships among them from multimodal unstructured data. |
| 18 | Predictive Causal Inference via Spatio-Temporal Modeling and Penalized Empirical Likelihood | 2025-07-11 | 展开This study introduces an integrated framework for predictive causal inference designed to overcome limitations inherent in conventional single model approaches. Specifically, we combine a Hidden Markov Model (HMM) for spatial health state estimation with a Multi Task and Multi Graph Convolutional Network (MTGCN) for capturing temporal outcome trajectories. The framework asymmetrically treats temporal and spatial information regarding them as endogenous variables in the outcome regression, and exogenous variables in the propensity score model, thereby expanding the standard doubly robust treatment effect estimation to jointly enhance bias correction and predictive accuracy. To demonstrate its utility, we focus on clinical domains such as cancer, dementia, and Parkinson disease, where treatment effects are challenging to observe directly. Simulation studies are conducted to emulate latent disease dynamics and evaluate the model performance under varying conditions. Overall, the proposed framework advances predictive causal inference by structurally adapting to spatiotemporal complexities common in biomedical data. |
| 19 | Can LLMs Reconcile Knowledge Conflicts in Counterfactual Reasoning | 2025-06-15 | 展开Large Language Models have been shown to contain extensive world knowledge in their parameters, enabling impressive performance on many knowledge intensive tasks. However, when deployed in novel settings, LLMs often encounter situations where they must integrate parametric knowledge with new or unfamiliar information. In this work, we explore whether LLMs can combine knowledge in-context with their parametric knowledge through the lens of counterfactual reasoning. Through synthetic and real experiments in multi-hop reasoning problems, we show that LLMs generally struggle with counterfactual reasoning, often resorting to exclusively using their parametric knowledge. Moreover, we show that simple post-hoc finetuning can struggle to instill counterfactual reasoning ability -- often leading to degradation in stored parametric knowledge. Ultimately, our work reveals important limitations of current LLM's abilities to re-purpose parametric knowledge in novel settings. |
| 20 | Counterfactual reasoning: an analysis of in-context emergence | 2025-06-05 | 展开Large-scale neural language models exhibit remarkable performance in in-context learning: the ability to learn and reason about the input context on the fly. This work studies in-context counterfactual reasoning in language models, that is, the ability to predict consequences of a hypothetical scenario. We focus on a well-defined, synthetic linear regression task that requires noise abduction. Accurate prediction is based on (1) inferring an unobserved latent concept and (2) copying contextual noise from factual observations. We show that language models are capable of counterfactual reasoning. Further, we enhance existing identifiability results and reduce counterfactual reasoning for a broad class of functions to a transformation on in-context observations. In Transformers, we find that self-attention, model depth and pre-training data diversity drive performance. Moreover, we provide mechanistic evidence that the latent concept is linearly represented in the residual stream and we introduce designated \textit{noise abduction heads} central to performing counterfactual reasoning. Lastly, our findings extend to counterfactual reasoning under SDE dynamics and reflect that Transformers can perform noise abduction on sequential data, providing preliminary evidence on the potential for counterfactual story generation. Our code is available under https://github.com/mrtzmllr/iccr. |
| 21 | CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data | 2025-03-06 | 展开True intelligence hinges on the ability to uncover and leverage hidden causal relations. Despite significant progress in AI and computer vision (CV), there remains a lack of benchmarks for assessing models' abilities to infer latent causality from complex visual data. In this paper, we introduce \textsc{\textbf{Causal3D}}, a novel and comprehensive benchmark that integrates structured data (tables) with corresponding visual representations (images) to evaluate causal reasoning. Designed within a systematic framework, Causal3D comprises 19 3D-scene datasets capturing diverse causal relations, views, and backgrounds, enabling evaluations across scenes of varying complexity. We assess multiple state-of-the-art methods, including classical causal discovery, causal representation learning, and large/vision-language models (LLMs/VLMs). Our experiments show that as causal structures grow more complex without prior knowledge, performance declines significantly, highlighting the challenges even advanced methods face in complex causal scenarios. Causal3D serves as a vital resource for advancing causal reasoning in CV and fostering trustworthy AI in critical domains. |
| 22 | Long-Tailed Classification by Keeping the Good and Removing the Bad Momentum Causal Effect | 2020-09-28 | 展开As the class size grows, maintaining a balanced dataset across many classes is challenging because the data are long-tailed in nature; it is even impossible when the sample-of-interest co-exists with each other in one collectable unit, e.g., multiple visual instances in one image. Therefore, long-tailed classification is the key to deep learning at scale. However, existing methods are mainly based on re-weighting/re-sampling heuristics that lack a fundamental theory. In this paper, we establish a causal inference framework, which not only unravels the whys of previous methods, but also derives a new principled solution. Specifically, our theory shows that the SGD momentum is essentially a confounder in long-tailed classification. On one hand, it has a harmful causal effect that misleads the tail prediction biased towards the head. On the other hand, its induced mediation also benefits the representation learning and head prediction. Our framework elegantly disentangles the paradoxical effects of the momentum, by pursuing the direct causal effect caused by an input sample. In particular, we use causal intervention in training, and counterfactual reasoning in inference, to remove the "bad" while keep the "good". We achieve new state-of-the-arts on three long-tailed visual recognition benchmarks: Long-tailed CIFAR-10/-100, ImageNet-LT for image classification and LVIS for instance segmentation. |
| 序号 | 标题 | 日期 | 摘要 |
|---|---|---|---|
| 1 | BasicAVSR: Arbitrary-Scale Video Super-Resolution via Image Priors and Enhanced Motion Compensation | 2025-10-30 | 展开Arbitrary-scale video super-resolution (AVSR) aims to enhance the resolution of video frames, potentially at various scaling factors, which presents several challenges regarding spatial detail reproduction, temporal consistency, and computational complexity. In this paper, we propose a strong baseline BasicAVSR for AVSR by integrating four key components: 1) adaptive multi-scale frequency priors generated from image Laplacian pyramids, 2) a flow-guided propagation unit to aggregate spatiotemporal information from adjacent frames, 3) a second-order motion compensation unit for more accurate spatial alignment of adjacent frames, and 4) a hyper-upsampling unit to generate scale-aware and content-independent upsampling kernels. To meet diverse application demands, we instantiate three propagation variants: (i) a unidirectional RNN unit for strictly online inference, (ii) a unidirectional RNN unit empowered with a limited lookahead that tolerates a small output delay, and (iii) a bidirectional RNN unit designed for offline tasks where computational resources are less constrained. Experimental results demonstrate the effectiveness and adaptability of our model across these different scenarios. Through extensive experiments, we show that BasicAVSR significantly outperforms existing methods in terms of super-resolution quality, generalization ability, and inference speed. Our work not only advances the state-of-the-art in AVSR but also extends its core components to multiple frameworks for diverse scenarios. The code is available at https://github.com/shangwei5/BasicAVSR. |
| 2 | FlashVSR: Towards Real-Time Diffusion-Based Streaming Video Super-Resolution | 2025-10-14 | 展开Diffusion models have recently advanced video restoration, but applying them to real-world video super-resolution (VSR) remains challenging due to high latency, prohibitive computation, and poor generalization to ultra-high resolutions. Our goal in this work is to make diffusion-based VSR practical by achieving efficiency, scalability, and real-time performance. To this end, we propose FlashVSR, the first diffusion-based one-step streaming framework towards real-time VSR. FlashVSR runs at approximately 17 FPS for 768x1408 videos on a single A100 GPU by combining three complementary innovations: (i) a train-friendly three-stage distillation pipeline that enables streaming super-resolution, (ii) locality-constrained sparse attention that cuts redundant computation while bridging the train-test resolution gap, and (iii) a tiny conditional decoder that accelerates reconstruction without sacrificing quality. To support large-scale training, we also construct VSR-120K, a new dataset with 120k videos and 180k images. Extensive experiments show that FlashVSR scales reliably to ultra-high resolutions and achieves state-of-the-art performance with up to 12x speedup over prior one-step diffusion VSR models. We will release the code, pretrained models, and dataset to foster future research in efficient diffusion-based VSR. |
| 3 | Time-Correlated Video Bridge Matching | 2025-10-14 | 展开Diffusion models excel in noise-to-data generation tasks, providing a mapping from a Gaussian distribution to a more complex data distribution. However they struggle to model translations between complex distributions, limiting their effectiveness in data-to-data tasks. While Bridge Matching (BM) models address this by finding the translation between data distributions, their application to time-correlated data sequences remains unexplored. This is a critical limitation for video generation and manipulation tasks, where maintaining temporal coherence is particularly important. To address this gap, we propose Time-Correlated Video Bridge Matching (TCVBM), a framework that extends BM to time-correlated data sequences in the video domain. TCVBM explicitly models inter-sequence dependencies within the diffusion bridge, directly incorporating temporal correlations into the sampling process. We compare our approach to classical methods based on bridge matching and diffusion models for three video-related tasks: frame interpolation, image-to-video generation, and video super-resolution. TCVBM achieves superior performance across multiple quantitative metrics, demonstrating enhanced generation quality and reconstruction fidelity. |
| 4 | UniMMVSR: A Unified Multi-Modal Framework for Cascaded Video Super-Resolution | 2025-10-09 | 展开Cascaded video super-resolution has emerged as a promising technique for decoupling the computational burden associated with generating high-resolution videos using large foundation models. Existing studies, however, are largely confined to text-to-video tasks and fail to leverage additional generative conditions beyond text, which are crucial for ensuring fidelity in multi-modal video generation. We address this limitation by presenting UniMMVSR, the first unified generative video super-resolution framework to incorporate hybrid-modal conditions, including text, images, and videos. We conduct a comprehensive exploration of condition injection strategies, training schemes, and data mixture techniques within a latent video diffusion model. A key challenge was designing distinct data construction and condition utilization methods to enable the model to precisely utilize all condition types, given their varied correlations with the target video. Our experiments demonstrate that UniMMVSR significantly outperforms existing methods, producing videos with superior detail and a higher degree of conformity to multi-modal conditions. We also validate the feasibility of combining UniMMVSR with a base model to achieve multi-modal guided generation of 4K video, a feat previously unattainable with existing techniques. |
| 5 | One-Step Diffusion for Detail-Rich and Temporally Consistent Video Super-Resolution | 2025-06-18 | 展开It is a challenging problem to reproduce rich spatial details while maintaining temporal consistency in real-world video super-resolution (Real-VSR), especially when we leverage pre-trained generative models such as stable diffusion (SD) for realistic details synthesis. Existing SD-based Real-VSR methods often compromise spatial details for temporal coherence, resulting in suboptimal visual quality. We argue that the key lies in how to effectively extract the degradation-robust temporal consistency priors from the low-quality (LQ) input video and enhance the video details while maintaining the extracted consistency priors. To achieve this, we propose a Dual LoRA Learning (DLoRAL) paradigm to train an effective SD-based one-step diffusion model, achieving realistic frame details and temporal consistency simultaneously. Specifically, we introduce a Cross-Frame Retrieval (CFR) module to aggregate complementary information across frames, and train a Consistency-LoRA (C-LoRA) to learn robust temporal representations from degraded inputs. After consistency learning, we fix the CFR and C-LoRA modules and train a Detail-LoRA (D-LoRA) to enhance spatial details while aligning with the temporal space defined by C-LoRA to keep temporal coherence. The two phases alternate iteratively for optimization, collaboratively delivering consistent and detail-rich outputs. During inference, the two LoRA branches are merged into the SD model, allowing efficient and high-quality video restoration in a single diffusion step. Experiments show that DLoRAL achieves strong performance in both accuracy and speed. Code and models are available at https://github.com/yjsunnn/DLoRAL. |
| 6 | DOVE: Efficient One-Step Diffusion Model for Real-World Video Super-Resolution | 2025-05-22 | 展开Diffusion models have demonstrated promising performance in real-world video super-resolution (VSR). However, the dozens of sampling steps they require, make inference extremely slow. Sampling acceleration techniques, particularly single-step, provide a potential solution. Nonetheless, achieving one step in VSR remains challenging, due to the high training overhead on video data and stringent fidelity demands. To tackle the above issues, we propose DOVE, an efficient one-step diffusion model for real-world VSR. DOVE is obtained by fine-tuning a pretrained video diffusion model (i.e., CogVideoX). To effectively train DOVE, we introduce the latent-pixel training strategy. The strategy employs a two-stage scheme to gradually adapt the model to the video super-resolution task. Meanwhile, we design a video processing pipeline to construct a high-quality dataset tailored for VSR, termed HQ-VSR. Fine-tuning on this dataset further enhances the restoration capability of DOVE. Extensive experiments show that DOVE exhibits comparable or superior performance to multi-step diffusion-based VSR methods. It also offers outstanding inference efficiency, achieving up to a 28$\times$ speed-up over existing methods such as MGLD-VSR. Code is available at: https://github.com/zhengchen1999/DOVE. |
| 7 | Blind Video Super-Resolution based on Implicit Kernels | 2025-03-10 | 展开Blind video super-resolution (BVSR) is a low-level vision task which aims to generate high-resolution videos from low-resolution counterparts in unknown degradation scenarios. Existing approaches typically predict blur kernels that are spatially invariant in each video frame or even the entire video. These methods do not consider potential spatio-temporal varying degradations in videos, resulting in suboptimal BVSR performance. In this context, we propose a novel BVSR model based on Implicit Kernels, BVSR-IK, which constructs a multi-scale kernel dictionary parameterized by implicit neural representations. It also employs a newly designed recurrent Transformer to predict the coefficient weights for accurate filtering in both frame correction and feature alignment. Experimental results have demonstrated the effectiveness of the proposed BVSR-IK, when compared with four state-of-the-art BVSR models on three commonly used datasets, with BVSR-IK outperforming the second best approach, FMA-Net, by up to 0.59 dB in PSNR. Source code will be available at https://github.com/QZ1-boy/BVSR-IK. |
| 8 | FCVSR: A Frequency-aware Method for Compressed Video Super-Resolution | 2025-02-10 | 展开Compressed video super-resolution (SR) aims to generate high-resolution (HR) videos from the corresponding low-resolution (LR) compressed videos. Recently, some compressed video SR methods attempt to exploit the spatio-temporal information in the frequency domain, showing great promise in super-resolution performance. However, these methods do not differentiate various frequency subbands spatially or capture the temporal frequency dynamics, potentially leading to suboptimal results. In this paper, we propose a deep frequency-based compressed video SR model (FCVSR) consisting of a motion-guided adaptive alignment (MGAA) network and a multi-frequency feature refinement (MFFR) module. Additionally, a frequency-aware contrastive loss is proposed for training FCVSR, in order to reconstruct finer spatial details. The proposed model has been evaluated on three public compressed video super-resolution datasets, with results demonstrating its effectiveness when compared to existing works in terms of super-resolution performance (up to a 0.14dB gain in PSNR over the second-best model) and complexity. |
7. knowledge graph/knowledge distillation/knowledge representation/knowledge transfer/knowledge embedding
| 序号 | 标题 | 日期 | 摘要 |
|---|---|---|---|
| 1 | Knowledge Distillation of Noisy Force Labels for Improved Coarse-Grained Force Fields | 2025-10-30 | 展开Molecular dynamics simulations are an integral tool for studying the atomistic behavior of materials under diverse conditions. However, they can be computationally demanding in wall-clock time, especially for large systems, which limits the time and length scales accessible. Coarse-grained (CG) models reduce computational expense by grouping atoms into simplified representations commonly termed beads, but sacrifice atomic detail and introduce mapping noise, complicating the training of machine-learned surrogates. Moreover, because CG models inherently include entropic contributions, they cannot be fit directly to all-atom energies, leaving instantaneous, noisy forces as the only state-specific quantities available for training. Here, we apply a knowledge distillation framework by first training an initial CG neural network potential (the teacher) solely on CG-mapped forces to denoise those labels, then distill its force and energy predictions to train refined CG models (the student) in both single- and ensemble-training setups while exploring different force and energy target combinations. We validate this framework on a complex molecular fluid - a deep eutectic solvent - by evaluating two-, three-, and many-body properties and compare the CG and all-atom results. Our findings demonstrate that training a student model on ensemble teacher-predicted forces and per-bead energies improves the quality and stability of CG force fields. |
| 2 | Inside CORE-KG: Evaluating Structured Prompting and Coreference Resolution for Knowledge Graphs | 2025-10-30 | 展开Human smuggling networks are increasingly adaptive and difficult to analyze. Legal case documents offer critical insights but are often unstructured, lexically dense, and filled with ambiguous or shifting references, which pose significant challenges for automated knowledge graph (KG) construction. While recent LLM-based approaches improve over static templates, they still generate noisy, fragmented graphs with duplicate nodes due to the absence of guided extraction and coreference resolution. The recently proposed CORE-KG framework addresses these limitations by integrating a type-aware coreference module and domain-guided structured prompts, significantly reducing node duplication and legal noise. In this work, we present a systematic ablation study of CORE-KG to quantify the individual contributions of its two key components. Our results show that removing coreference resolution results in a 28.32% increase in node duplication and a 4.32% increase in noisy nodes, while removing structured prompts leads to a 4.34% increase in node duplication and a 73.33% increase in noisy nodes. These findings offer empirical insights for designing robust LLM-based pipelines for extracting structured representations from complex legal texts. |
| 3 | LINK-KG: LLM-Driven Coreference-Resolved Knowledge Graphs for Human Smuggling Networks | 2025-10-30 | 展开Human smuggling networks are complex and constantly evolving, making them difficult to analyze comprehensively. Legal case documents offer rich factual and procedural insights into these networks but are often long, unstructured, and filled with ambiguous or shifting references, posing significant challenges for automated knowledge graph (KG) construction. Existing methods either overlook coreference resolution or fail to scale beyond short text spans, leading to fragmented graphs and inconsistent entity linking. We propose LINK-KG, a modular framework that integrates a three-stage, LLM-guided coreference resolution pipeline with downstream KG extraction. At the core of our approach is a type-specific Prompt Cache, which consistently tracks and resolves references across document chunks, enabling clean and disambiguated narratives for structured knowledge graph construction from both short and long legal texts. LINK-KG reduces average node duplication by 45.21% and noisy nodes by 32.22% compared to baseline methods, resulting in cleaner and more coherent graph structures. These improvements establish LINK-KG as a strong foundation for analyzing complex criminal networks. |
| 4 | ReSpec: Towards Optimizing Speculative Decoding in Reinforcement Learning Systems | 2025-10-30 | 展开Adapting large language models (LLMs) via reinforcement learning (RL) is often bottlenecked by the generation stage, which can consume over 75% of the training time. Speculative decoding (SD) accelerates autoregressive generation in serving systems, but its behavior under RL training remains largely unexplored. We identify three critical gaps that hinder the naive integration of SD into RL systems: diminishing speedups at large batch sizes, drafter staleness under continual actor updates, and drafter-induced policy degradation. To address these gaps, we present ReSpec, a system that adapts SD to RL through three complementary mechanisms: dynamically tuning SD configurations, evolving the drafter via knowledge distillation, and weighting updates by rollout rewards. On Qwen models (3B--14B), ReSpec achieves up to 4.5x speedup while preserving reward convergence and training stability, providing a practical solution for efficient RL-based LLM adaptation. |
| 5 | Personalized Treatment Outcome Prediction from Scarce Data via Dual-Channel Knowledge Distillation and Adaptive Fusion | 2025-10-30 | 展开Personalized treatment outcome prediction based on trial data for small-sample and rare patient groups is critical in precision medicine. However, the costly trial data limit the prediction performance. To address this issue, we propose a cross-fidelity knowledge distillation and adaptive fusion network (CFKD-AFN), which leverages abundant but low-fidelity simulation data to enhance predictions on scarce but high-fidelity trial data. CFKD-AFN incorporates a dual-channel knowledge distillation module to extract complementary knowledge from the low-fidelity model, along with an attention-guided fusion module to dynamically integrate multi-source information. Experiments on treatment outcome prediction for the chronic obstructive pulmonary disease demonstrates significant improvements of CFKD-AFN over state-of-the-art methods in prediction accuracy, ranging from 6.67% to 74.55%, and strong robustness to varying high-fidelity dataset sizes. Furthermore, we extend CFKD-AFN to an interpretable variant, enabling the exploration of latent medical semantics to support clinical decision-making. |
| 6 | From Amateur to Master: Infusing Knowledge into LLMs via Automated Curriculum Learning | 2025-10-30 | 展开Large Language Models (LLMs) excel at general tasks but underperform in specialized domains like economics and psychology, which require deep, principled understanding. To address this, we introduce ACER (Automated Curriculum-Enhanced Regimen) that transforms generalist models into domain experts without sacrificing their broad capabilities. ACER first synthesizes a comprehensive, textbook-style curriculum by generating a table of contents for a subject and then creating question-answer (QA) pairs guided by Bloom's taxonomy. This ensures systematic topic coverage and progressively increasing difficulty. The resulting synthetic corpus is used for continual pretraining with an interleaved curriculum schedule, aligning learning across both content and cognitive dimensions. Experiments with Llama 3.2 (1B and 3B) show significant gains in specialized MMLU subsets. In challenging domains like microeconomics, where baselines struggle, ACER boosts accuracy by 5 percentage points. Across all target domains, we observe a consistent macro-average improvement of 3 percentage points. Notably, ACER not only prevents catastrophic forgetting but also facilitates positive cross-domain knowledge transfer, improving performance on non-target domains by 0.7 points. Beyond MMLU, ACER enhances performance on knowledge-intensive benchmarks like ARC and GPQA by over 2 absolute points, while maintaining stable performance on general reasoning tasks. Our results demonstrate that ACER offers a scalable and effective recipe for closing critical domain gaps in LLMs. |
| 7 | Distilling Multilingual Vision-Language Models: When Smaller Models Stay Multilingual | 2025-10-30 | 展开Vision-language models (VLMs) exhibit uneven performance across languages, a problem that is often exacerbated when the model size is reduced. While Knowledge distillation (KD) demonstrates promising results in transferring knowledge from larger to smaller VLMs, applying KD in multilingualism is an underexplored area. This paper presents a controlled empirical study of KD behavior across five distillation approaches, isolating their effects on cross-lingual representation consistency and downstream performance stability under model compression. We study five distillation formulations across CLIP and SigLIP2, and evaluate them on in-domain retrieval and out-of-domain visual QA. We find that some configurations preserve or even improve multilingual retrieval robustness despite halving model size, but others fail to maintain cross-task stability, exposing design-sensitive trade-offs that aggregate accuracy alone does not reveal. |
| 8 | Do Students Debias Like Teachers? On the Distillability of Bias Mitigation Methods | 2025-10-30 | 展开Knowledge distillation (KD) is an effective method for model compression and transferring knowledge between models. However, its effect on model's robustness against spurious correlations that degrade performance on out-of-distribution data remains underexplored. This study investigates the effect of knowledge distillation on the transferability of ``debiasing'' capabilities from teacher models to student models on natural language inference (NLI) and image classification tasks. Through extensive experiments, we illustrate several key findings: (i) overall the debiasing capability of a model is undermined post-KD; (ii) training a debiased model does not benefit from injecting teacher knowledge; (iii) although the overall robustness of a model may remain stable post-distillation, significant variations can occur across different types of biases; and (iv) we pin-point the internal attention pattern and circuit that causes the distinct behavior post-KD. Given the above findings, we propose three effective solutions to improve the distillability of debiasing methods: developing high quality data for augmentation, implementing iterative knowledge distillation, and initializing student models with weights obtained from teacher models. To the best of our knowledge, this is the first study on the effect of KD on debiasing and its interenal mechanism at scale. Our findings provide understandings on how KD works and how to design better debiasing methods. |
| 9 | Rethinking Cross-lingual Alignment: Balancing Transfer and Cultural Erasure in Multilingual LLMs | 2025-10-29 | 展开Cross-lingual alignment (CLA) aims to align multilingual representations, enabling Large Language Models (LLMs) to seamlessly transfer knowledge across languages. While intuitive, we hypothesize, this pursuit of representational convergence can inadvertently cause "cultural erasure", the functional loss of providing culturally-situated responses that should diverge based on the query language. In this work, we systematically analyze this trade-off by introducing a holistic evaluation framework, the transfer-localization plane, which quantifies both desirable knowledge transfer and undesirable cultural erasure. Using this framework, we re-evaluate recent CLA approaches and find that they consistently improve factual transfer at the direct cost of cultural localization across all six languages studied. Our investigation into the internal representations of these models reveals a key insight: universal factual transfer and culturally-specific knowledge are optimally steerable at different model layers. Based on this finding, we propose Surgical Steering, a novel inference-time method that disentangles these two objectives. By applying targeted activation steering to distinct layers, our approach achieves a better balance between the two competing dimensions, effectively overcoming the limitations of current alignment techniques. |
| 10 | Robust GNN Watermarking via Implicit Perception of Topological Invariants | 2025-10-29 | 展开Graph Neural Networks (GNNs) are valuable intellectual property, yet many watermarks rely on backdoor triggers that break under common model edits and create ownership ambiguity. We present InvGNN-WM, which ties ownership to a model's implicit perception of a graph invariant, enabling trigger-free, black-box verification with negligible task impact. A lightweight head predicts normalized algebraic connectivity on an owner-private carrier set; a sign-sensitive decoder outputs bits, and a calibrated threshold controls the false-positive rate. Across diverse node and graph classification datasets and backbones, InvGNN-WM matches clean accuracy while yielding higher watermark accuracy than trigger- and compression-based baselines. It remains strong under unstructured pruning, fine-tuning, and post-training quantization; plain knowledge distillation (KD) weakens the mark, while KD with a watermark loss (KD+WM) restores it. We provide guarantees for imperceptibility and robustness, and we prove that exact removal is NP-complete. |
| 11 | BambooKG: A Neurobiologically-inspired Frequency-Weight Knowledge Graph | 2025-10-29 | 展开Retrieval-Augmented Generation allows LLMs to access external knowledge, reducing hallucinations and ageing-data issues. However, it treats retrieved chunks independently and struggles with multi-hop or relational reasoning, especially across documents. Knowledge graphs enhance this by capturing the relationships between entities using triplets, enabling structured, multi-chunk reasoning. However, these tend to miss information that fails to conform to the triplet structure. We introduce BambooKG, a knowledge graph with frequency-based weights on non-triplet edges which reflect link strength, drawing on the Hebbian principle of "fire together, wire together". This decreases information loss and results in improved performance on single- and multi-hop reasoning, outperforming the existing solutions. |
| 12 | Cross Learning between Electronic Structure Theories for Unifying Molecular, Surface, and Inorganic Crystal Foundation Force Fields | 2025-10-29 | 展开Creating a single unified interatomic potential capable of attaining ab initio accuracy across all chemistry remains a long-standing challenge in computational chemistry and materials science. This work introduces a training protocol for foundation machine-learning interatomic potentials (MLIPs) that bridge molecular, surface, and materials chemistry through cross-domain learning. First, we introduce enhancements to the MACE architecture that improve its performance on chemically diverse databases by increasing weight sharing across chemical elements and introducing non-linear factors into the tensor decomposition of the product basis. Second, we develop a multi-head replay post-training methodology that enables efficient knowledge transfer across diverse chemical domains. By fine-tuning on datasets at different levels of electronic structure theory, including inorganic crystals, molecular systems, surface chemistry, and reactive organic chemistry, we demonstrate that a single unified model achieves state-of-the-art performance across several chemical domains. Comprehensive benchmarking reveals superior cross-domain transferability compared with existing specialised and multi-task models, with notable improvements in molecular and surface properties while maintaining state-of-the-art performance in materials-property prediction. |
| 13 | Parameter Averaging in Link Prediction | 2025-10-29 | 展开Ensemble methods are widely employed to improve generalization in machine learning. This has also prompted the adoption of ensemble learning for the knowledge graph embedding (KGE) models in performing link prediction. Typical approaches to this end train multiple models as part of the ensemble, and the diverse predictions are then averaged. However, this approach has some significant drawbacks. For instance, the computational overhead of training multiple models increases latency and memory overhead. In contrast, model merging approaches offer a promising alternative that does not require training multiple models. In this work, we introduce model merging, specifically weighted averaging, in KGE models. Herein, a running average of model parameters from a training epoch onward is maintained and used for predictions. To address this, we additionally propose an approach that selectively updates the running average of the ensemble model parameters only when the generalization performance improves on a validation dataset. We evaluate these two different weighted averaging approaches on link prediction tasks, comparing the state-of-the-art benchmark ensemble approach. Additionally, we evaluate the weighted averaging approach considering literal-augmented KGE models and multi-hop query answering tasks as well. The results demonstrate that the proposed weighted averaging approach consistently improves performance across diverse evaluation settings. |
| 14 | A Privacy-Preserving Ecosystem for Developing Machine Learning Algorithms Using Patient Data: Insights from the TUM.ai Makeathon | 2025-10-29 | 展开The integration of clinical data offers significant potential for the development of personalized medicine. However, its use is severely restricted by the General Data Protection Regulation (GDPR), especially for small cohorts with rare diseases. High-quality, structured data is essential for the development of predictive medical AI. In this case study, we propose a novel, multi-stage approach to secure AI training: (1) The model is designed on a simulated clinical knowledge graph (cKG). This graph is used exclusively to represent the structural characteristics of the real cKG without revealing any sensitive content. (2) The model is then integrated into the FeatureCloud (FC) federated learning framework, where it is prepared in a single-client configuration within a protected execution environment. (3) Training then takes place within the hospital environment on the real cKG, either under the direct supervision of hospital staff or via a fully automated pipeline controlled by the hospital. (4) Finally, verified evaluation scripts are executed, which only return aggregated performance metrics. This enables immediate performance feedback without sensitive patient data or individual predictions, leaving the clinic. A fundamental element of this approach involves the incorporation of a cKG, which serves to organize multi-omics and patient data within the context of real-world hospital environments. This approach was successfully validated during the TUM.ai Makeathon 2024 (TUMaiM24) challenge set by the Dr. von Hauner Children's Hospital (HCH-LMU): 50 students developed models for patient classification and diagnosis without access to real data. Deploying secure algorithms via federated frameworks, such as the FC framework, could be a practical way of achieving privacy-preserving AI in healthcare. |
| 15 | Model-Document Protocol for AI Search | 2025-10-29 | 展开AI search depends on linking large language models (LLMs) with vast external knowledge sources. Yet web pages, PDF files, and other raw documents are not inherently LLM-ready: they are long, noisy, and unstructured. Conventional retrieval methods treat these documents as verbatim text and return raw passages, leaving the burden of fragment assembly and contextual reasoning to the LLM. This gap underscores the need for a new retrieval paradigm that redefines how models interact with documents. We introduce the Model-Document Protocol (MDP), a general framework that formalizes how raw text is bridged to LLMs through consumable knowledge representations. Rather than treating retrieval as passage fetching, MDP defines multiple pathways that transform unstructured documents into task-specific, LLM-ready inputs. These include agentic reasoning, which curates raw evidence into coherent context; memory grounding, which accumulates reusable notes to enrich reasoning; and structured leveraging, which encodes documents into formal representations such as graphs or key-value caches. All three pathways share the same goal: ensuring that what reaches the LLM is not raw fragments but compact, structured knowledge directly consumable for reasoning. As an instantiation, we present MDP-Agent, which realizes the protocol through an agentic process: constructing document-level gist memories for global coverage, performing diffusion-based exploration with vertical exploitation to uncover layered dependencies, and applying map-reduce style synthesis to integrate large-scale evidence into compact yet sufficient context. Experiments on information-seeking benchmarks demonstrate that MDP-Agent outperforms baselines, validating both the soundness of the MDP framework and the effectiveness of its agentic instantiation. |
| 16 | A word association network methodology for evaluating implicit biases in LLMs compared to humans | 2025-10-28 | 展开As Large language models (LLMs) become increasingly integrated into our lives, their inherent social biases remain a pressing concern. Detecting and evaluating these biases can be challenging because they are often implicit rather than explicit in nature, so developing evaluation methods that assess the implicit knowledge representations of LLMs is essential. We present a novel word association network methodology for evaluating implicit biases in LLMs based on simulating semantic priming within LLM-generated word association networks. Our prompt-based approach taps into the implicit relational structures encoded in LLMs, providing both quantitative and qualitative assessments of bias. Unlike most prompt-based evaluation methods, our method enables direct comparisons between various LLMs and humans, providing a valuable point of reference and offering new insights into the alignment of LLMs with human cognition. To demonstrate the utility of our methodology, we apply it to both humans and several widely used LLMs to investigate social biases related to gender, religion, ethnicity, sexual orientation, and political party. Our results reveal both convergences and divergences between LLM and human biases, providing new perspectives on the potential risks of using LLMs. Our methodology contributes to a systematic, scalable, and generalizable framework for evaluating and comparing biases across multiple LLMs and humans, advancing the goal of transparent and socially responsible language technologies. |
| 17 | Adaptive Knowledge Transferring with Switching Dual-Student Framework for Semi-Supervised Medical Image Segmentation | 2025-10-28 | 展开Teacher-student frameworks have emerged as a leading approach in semi-supervised medical image segmentation, demonstrating strong performance across various tasks. However, the learning effects are still limited by the strong correlation and unreliable knowledge transfer process between teacher and student networks. To overcome this limitation, we introduce a novel switching Dual-Student architecture that strategically selects the most reliable student at each iteration to enhance dual-student collaboration and prevent error reinforcement. We also introduce a strategy of Loss-Aware Exponential Moving Average to dynamically ensure that the teacher absorbs meaningful information from students, improving the quality of pseudo-labels. Our plug-and-play framework is extensively evaluated on 3D medical image segmentation datasets, where it outperforms state-of-the-art semi-supervised methods, demonstrating its effectiveness in improving segmentation accuracy under limited supervision. |
| 18 | Beyond Neural Incompatibility: Easing Cross-Scale Knowledge Transfer in Large Language Models through Latent Semantic Alignment | 2025-10-28 | 展开Large Language Models (LLMs) encode vast amounts of knowledge in their massive parameters, which is accessible to locate, trace, and analyze. Despite advances in neural interpretability, it is still not clear how to transfer knowledge in a fine-grained manner, namely parametric knowledge transfer (PKT). A key problem is enabling effective and efficient knowledge transfer across LLMs of different scales, which is essential for achieving greater flexibility and broader applicability in transferring knowledge between LLMs. Due to neural incompatibility, referring to the architectural and parametric differences between LLMs of varying scales, existing methods that directly reuse layer parameters are severely limited. In this paper, we identify the semantic alignment in latent space as the fundamental prerequisite for LLM cross-scale knowledge transfer. Instead of directly using the layer parameters, our approach takes activations as the medium of layer-wise knowledge transfer. Leveraging the semantics in latent space, our approach is simple and outperforms prior work, better aligning model behaviors across varying scales. Evaluations on four benchmarks demonstrate the efficacy of our method. Further analysis reveals the key factors easing cross-scale knowledge transfer and provides insights into the nature of latent semantic alignment. |
| 19 | PULSE: Privileged Knowledge Transfer from Electrodermal Activity to Low-Cost Sensors for Stress Monitoring | 2025-10-28 | 展开Electrodermal activity (EDA), the primary signal for stress detection, requires costly hardware often unavailable in real-world wearables. In this paper, we propose PULSE, a framework that utilizes EDA exclusively during self-supervised pretraining, while enabling inference without EDA but with more readily available modalities such as ECG, BVP, ACC, and TEMP. Our approach separates encoder outputs into shared and private embeddings. We align shared embeddings across modalities and fuse them into a modality-invariant representation. The private embeddings carry modality-specific information to support the reconstruction objective. Pretraining is followed by knowledge transfer where a frozen EDA teacher transfers sympathetic-arousal representations into student encoders. On WESAD, our method achieves strong stress-detection performance, showing that representations of privileged EDA can be transferred to low-cost sensors to improve accuracy while reducing hardware cost. |
| 20 | Mitigating Negative Transfer via Reducing Environmental Disagreement | 2025-10-28 | 展开Unsupervised Domain Adaptation~(UDA) focuses on transferring knowledge from a labeled source domain to an unlabeled target domain, addressing the challenge of \emph{domain shift}. Significant domain shifts hinder effective knowledge transfer, leading to \emph{negative transfer} and deteriorating model performance. Therefore, mitigating negative transfer is essential. This study revisits negative transfer through the lens of causally disentangled learning, emphasizing cross-domain discriminative disagreement on non-causal environmental features as a critical factor. Our theoretical analysis reveals that overreliance on non-causal environmental features as the environment evolves can cause discriminative disagreements~(termed \emph{environmental disagreement}), thereby resulting in negative transfer. To address this, we propose Reducing Environmental Disagreement~(RED), which disentangles each sample into domain-invariant causal features and domain-specific non-causal environmental features via adversarially training domain-specific environmental feature extractors in the opposite domains. Subsequently, RED estimates and reduces environmental disagreement based on domain-specific non-causal environmental features. Experimental results confirm that RED effectively mitigates negative transfer and achieves state-of-the-art performance. |
| 21 | VADTree: Explainable Training-Free Video Anomaly Detection via Hierarchical Granularity-Aware Tree | 2025-10-26 | 展开Video anomaly detection (VAD) focuses on identifying anomalies in videos. Supervised methods demand substantial in-domain training data and fail to deliver clear explanations for anomalies. In contrast, training-free methods leverage the knowledge reserves and language interactivity of large pre-trained models to detect anomalies. However, the current fixed-length temporal window sampling approaches struggle to accurately capture anomalies with varying temporal spans. Therefore, we propose VADTree that utilizes a Hierarchical Granularityaware Tree (HGTree) structure for flexible sampling in VAD. VADTree leverages the knowledge embedded in a pre-trained Generic Event Boundary Detection (GEBD) model to characterize potential anomaly event boundaries. Specifically, VADTree decomposes the video into generic event nodes based on boundary confidence, and performs adaptive coarse-fine hierarchical structuring and redundancy removal to construct the HGTree. Then, the multi-dimensional priors are injected into the visual language models (VLMs) to enhance the node-wise anomaly perception, and anomaly reasoning for generic event nodes is achieved via large language models (LLMs). Finally, an inter-cluster node correlation method is used to integrate the multi-granularity anomaly scores. Extensive experiments on three challenging datasets demonstrate that VADTree achieves state-of-the-art performance in training-free settings while drastically reducing the number of sampled video segments. The code will be available at https://github.com/wenlongli10/VADTree. |
| 22 | Accelerating Materials Design via LLM-Guided Evolutionary Search | 2025-10-26 | 展开Materials discovery requires navigating vast chemical and structural spaces while satisfying multiple, often conflicting, objectives. We present LLM-guided Evolution for MAterials design (LLEMA), a unified framework that couples the scientific knowledge embedded in large language models with chemistry-informed evolutionary rules and memory-based refinement. At each iteration, an LLM proposes crystallographically specified candidates under explicit property constraints; a surrogate-augmented oracle estimates physicochemical properties; and a multi-objective scorer updates success/failure memories to guide subsequent generations. Evaluated on 14 realistic tasks spanning electronics, energy, coatings, optics, and aerospace, LLEMA discovers candidates that are chemically plausible, thermodynamically stable, and property-aligned, achieving higher hit-rates and stronger Pareto fronts than generative and LLM-only baselines. Ablation studies confirm the importance of rule-guided generation, memory-based refinement, and surrogate prediction. By enforcing synthesizability and multi-objective trade-offs, LLEMA delivers a principled pathway to accelerate practical materials discovery. Code: https://github.com/scientific-discovery/LLEMA |
| 23 | On the accuracy of implicit neural representations for cardiovascular anatomies and hemodynamic fields | 2025-10-23 | 展开Implicit neural representations (INRs, also known as neural fields) have recently emerged as a powerful framework for knowledge representation, synthesis, and compression. By encoding fields as continuous functions within the weights and biases of deep neural networks-rather than relying on voxel- or mesh-based structured or unstructured representations-INRs offer both resolution independence and high memory efficiency. However, their accuracy in domain-specific applications remains insufficiently understood. In this work, we assess the performance of state-of-the-art INRs for compressing hemodynamic fields derived from numerical simulations and for representing cardiovascular anatomies via signed distance functions. We investigate several strategies to mitigate spectral bias, including specialized activation functions, both fixed and trainable positional encoding, and linear combinations of nonlinear kernels. On realistic, space- and time-varying hemodynamic fields in the thoracic aorta, INRs achieved remarkable compression ratios of up to approximately 230, with maximum absolute errors of 1 mmHg for pressure and 5-10 cm/s for velocity, without extensive hyperparameter tuning. Across 48 thoracic aortic anatomies, the average and maximum absolute anatomical discrepancies were below 0.5 mm and 1.6 mm, respectively. Overall, the SIREN, MFN-Gabor, and MHE architectures demonstrated the best performance. Source code and data is available at https://github.com/desResLab/nrf. |
| 24 | IKnow: Instruction-Knowledge-Aware Continual Pretraining for Effective Domain Adaptation | 2025-10-23 | 展开Continual pretraining promises to adapt large language models (LLMs) to new domains using only unlabeled test-time data, but naively applying standard self-supervised objectives to instruction-tuned models is known to degrade their instruction-following capability and semantic representations. Existing fixes assume access to the original base model or rely on knowledge from an external domain-specific database - both of which pose a realistic barrier in settings where the base model weights are withheld for safety reasons or reliable external corpora are unavailable. In this work, we propose Instruction-Knowledge-Aware Continual Adaptation (IKnow), a simple and general framework that formulates novel self-supervised objectives in the instruction-response dialogue format. Rather than depend- ing on external resources, IKnow leverages domain knowledge embedded within the text itself and learns to encode it at a deeper semantic level. |
| 25 | LLM-empowered knowledge graph construction: A survey | 2025-10-23 | 展开Knowledge Graphs (KGs) have long served as a fundamental infrastructure for structured knowledge representation and reasoning. With the advent of Large Language Models (LLMs), the construction of KGs has entered a new paradigm-shifting from rule-based and statistical pipelines to language-driven and generative frameworks. This survey provides a comprehensive overview of recent progress in LLM-empowered knowledge graph construction, systematically analyzing how LLMs reshape the classical three-layered pipeline of ontology engineering, knowledge extraction, and knowledge fusion. We first revisit traditional KG methodologies to establish conceptual foundations, and then review emerging LLM-driven approaches from two complementary perspectives: schema-based paradigms, which emphasize structure, normalization, and consistency; and schema-free paradigms, which highlight flexibility, adaptability, and open discovery. Across each stage, we synthesize representative frameworks, analyze their technical mechanisms, and identify their limitations. Finally, the survey outlines key trends and future research directions, including KG-based reasoning for LLMs, dynamic knowledge memory for agentic systems, and multimodal KG construction. Through this systematic review, we aim to clarify the evolving interplay between LLMs and knowledge graphs, bridging symbolic knowledge engineering and neural semantic understanding toward the development of adaptive, explainable, and intelligent knowledge systems. |
| 26 | Collateral Damage Assessment Model for AI System Target Engagement in Military Operations | 2025-10-23 | 展开In an era where AI (Artificial Intelligence) systems play an increasing role in the battlefield, ensuring responsible targeting demands rigorous assessment of potential collateral effects. In this context, a novel collateral damage assessment model for target engagement of AI systems in military operations is introduced. The model integrates temporal, spatial, and force dimensions within a unified Knowledge Representation and Reasoning (KRR) architecture following a design science methodological approach. Its layered structure captures the categories and architectural components of the AI systems to be engaged together with corresponding engaging vectors and contextual aspects. At the same time, spreading, severity, likelihood, and evaluation metrics are considered in order to provide a clear representation enhanced by transparent reasoning mechanisms. Further, the model is demonstrated and evaluated through instantiation which serves as a basis for further dedicated efforts that aim at building responsible and trustworthy intelligent systems for assessing the effects produced by engaging AI systems in military operations. |
| 27 | Code Digital Twin: Empowering LLMs with Tacit Knowledge for Complex Software Development | 2025-10-18 | 展开Recent advances in large language models (LLMs) have demonstrated strong capabilities in software engineering tasks, raising expectations of revolutionary productivity gains. However, enterprise software development is largely driven by incremental evolution, where challenges extend far beyond routine coding and depend critically on tacit knowledge, including design decisions at different levels and historical trade-offs. To achieve effective AI-powered support for complex software development, we should align emerging AI capabilities with the practical realities of enterprise development. To this end, we systematically identify challenges from both software and LLM perspectives. Alongside these challenges, we outline opportunities where AI and structured knowledge frameworks can enhance decision-making in tasks such as issue localization and impact analysis. To address these needs, we propose the Code Digital Twin, a living framework that models both the physical and conceptual layers of software, preserves tacit knowledge, and co-evolves with the codebase. By integrating hybrid knowledge representations, multi-stage extraction pipelines, incremental updates, LLM-empowered applications, and human-in-the-loop feedback, the Code Digital Twin transforms fragmented knowledge into explicit and actionable representations. Our vision positions it as a bridge between AI advancements and enterprise software realities, providing a concrete roadmap toward sustainable, intelligent, and resilient development and evolution of ultra-complex systems. |
| 28 | Manual2Skill++: Connector-Aware General Robotic Assembly from Instruction Manuals via Vision-Language Models | 2025-10-18 | 展开Assembly hinges on reliably forming connections between parts; yet most robotic approaches plan assembly sequences and part poses while treating connectors as an afterthought. Connections represent the critical "last mile" of assembly execution, while task planning may sequence operations and motion plan may position parts, the precise establishment of physical connections ultimately determines assembly success or failure. In this paper, we consider connections as first-class primitives in assembly representation, including connector types, specifications, quantities, and placement locations. Drawing inspiration from how humans learn assembly tasks through step-by-step instruction manuals, we present Manual2Skill++, a vision-language framework that automatically extracts structured connection information from assembly manuals. We encode assembly tasks as hierarchical graphs where nodes represent parts and sub-assemblies, and edges explicitly model connection relationships between components. A large-scale vision-language model parses symbolic diagrams and annotations in manuals to instantiate these graphs, leveraging the rich connection knowledge embedded in human-designed instructions. We curate a dataset containing over 20 assembly tasks with diverse connector types to validate our representation extraction approach, and evaluate the complete task understanding-to-execution pipeline across four complex assembly scenarios in simulation, spanning furniture, toys, and manufacturing components with real-world correspondence. |
| 29 | Tunable-Generalization Diffusion Powered by Self-Supervised Contextual Sub-Data for Low-Dose CT Reconstruction | 2025-09-28 | 展开Current models based on deep learning for low-dose CT denoising rely heavily on paired data and generalize poorly. Even the more concerned diffusion models need to learn the distribution of clean data for reconstruction, which is difficult to satisfy in medical clinical applications. At the same time, self-supervised-based methods face the challenge of significant degradation of generalizability of models pre-trained for the current dose to expand to other doses. To address these issues, this work proposes a novel method of TUnable-geneRalizatioN Diffusion (TurnDiff) powered by self-supervised contextual sub-data for low-dose CT reconstruction. Firstly, a contextual subdata self-enhancing similarity strategy is designed for denoising centered on the LDCT projection domain, which provides an initial prior for the subsequent progress. Subsequently, the initial prior is used to combine knowledge distillation with a deep combination of latent diffusion models for optimizing image details. The pre-trained model is used for inference reconstruction, and the pixel-level self-correcting fusion technique is proposed for fine-grained reconstruction of the image domain to enhance the image fidelity, using the initial prior and the LDCT image as a guide. In addition, the technique is flexibly applied to the generalization of upper and lower doses or even unseen doses. Dual-domain strategy cascade for self-supervised LDCT denoising, TurnDiff requires only LDCT projection domain data for training and testing. Comprehensive evaluation on both benchmark datasets and real-world data demonstrates that TurnDiff consistently outperforms state-of-the-art methods in both reconstruction and generalization. |
| 30 | Towards a Common Framework for Autoformalization | 2025-09-11 | 展开Autoformalization has emerged as a term referring to the automation of formalization - specifically, the formalization of mathematics using interactive theorem provers (proof assistants). Its rapid development has been driven by progress in deep learning, especially large language models (LLMs). More recently, the term has expanded beyond mathematics to describe the broader task of translating informal input into formal logical representations. At the same time, a growing body of research explores using LLMs to translate informal language into formal representations for reasoning, planning, and knowledge representation - often without explicitly referring to this process as autoformalization. As a result, despite addressing similar tasks, the largely independent development of these research areas has limited opportunities for shared methodologies, benchmarks, and theoretical frameworks that could accelerate progress. The goal of this paper is to review - explicit or implicit - instances of what can be considered autoformalization and to propose a unified framework, encouraging cross-pollination between different fields to advance the development of next generation AI systems. |
| 31 | DBLPLink 2.0 -- An Entity Linker for the DBLP Scholarly Knowledge Graph | 2025-07-30 | 展开In this work we present an entity linker for DBLP's 2025 version of RDF-based Knowledge Graph. Compared to the 2022 version, DBLP now considers publication venues as a new entity type called dblp:Stream. In the earlier version of DBLPLink, we trained KG-embeddings and re-rankers on a dataset to produce entity linkings. In contrast, in this work, we develop a zero-shot entity linker using LLMs using a novel method, where we re-rank candidate entities based on the log-probabilities of the "yes" token output at the penultimate layer of the LLM. |
| 32 | Exploring the In-Context Learning Capabilities of LLMs for Money Laundering Detection in Financial Graphs | 2025-07-20 | 展开The complexity and interconnectivity of entities involved in money laundering demand investigative reasoning over graph-structured data. This paper explores the use of large language models (LLMs) as reasoning engines over localized subgraphs extracted from a financial knowledge graph. We propose a lightweight pipeline that retrieves k-hop neighborhoods around entities of interest, serializes them into structured text, and prompts an LLM via few-shot in-context learning to assess suspiciousness and generate justifications. Using synthetic anti-money laundering (AML) scenarios that reflect common laundering behaviors, we show that LLMs can emulate analyst-style logic, highlight red flags, and provide coherent explanations. While this study is exploratory, it illustrates the potential of LLM-based graph reasoning in AML and lays groundwork for explainable, language-driven financial crime analytics. |
| 33 | Qualitative Analysis of the Teacher and Student Roles in Pair Programming | 2025-07-14 | 展开Background: Pair programming is a well-established and versatile agile practice. Previous research has found it to involve far more different roles than the well-known Driver and Observer/Navigator roles. Pair programming often involves heavy knowledge transfer from mainly one partner to the other. Objective: Understand how to fill the ensuing Teacher and Student roles well (positive behavioral patterns). Understand how they may break (anti-patterns). Method: Open coding and axial coding of 17 recorded pair programming sessions with 18 developers from 5 German software companies, plus interviews with 6 different developers from 4 other German companies. Results: We describe six facets of effective Teacher behavior (e.g. Prioritizing Knowledge Transfer) and two facets of effective Student behavior (e.g. Expressing Knowledge Wants). We describe four harmful would-be-Teacher behaviors (e.g. Pushing Unwanted Knowledge), and one harmful would-be-Student behavior (Failing to Provide a Back Channel). Conclusions: The role facets can serve as learning goals and to-do list for developers who want to develop strong pair programming skill. The anti-patterns can serve as warnings for one's own general behavior and as triggers for immediate meta-discussion if they occur within a pairing session. |
| 34 | MTL-KD: Multi-Task Learning Via Knowledge Distillation for Generalizable Neural Vehicle Routing Solver | 2025-06-03 | 展开Multi-Task Learning (MTL) in Neural Combinatorial Optimization (NCO) is a promising approach to train a unified model capable of solving multiple Vehicle Routing Problem (VRP) variants. However, existing Reinforcement Learning (RL)-based multi-task methods can only train light decoder models on small-scale problems, exhibiting limited generalization ability when solving large-scale problems. To overcome this limitation, this work introduces a novel multi-task learning method driven by knowledge distillation (MTL-KD), which enables the efficient training of heavy decoder models with strong generalization ability. The proposed MTL-KD method transfers policy knowledge from multiple distinct RL-based single-task models to a single heavy decoder model, facilitating label-free training and effectively improving the model's generalization ability across diverse tasks. In addition, we introduce a flexible inference strategy termed Random Reordering Re-Construction (R3C), which is specifically adapted for diverse VRP tasks and further boosts the performance of the multi-task model. Experimental results on 6 seen and 10 unseen VRP variants with up to 1000 nodes indicate that our proposed method consistently achieves superior performance on both uniform and real-world benchmarks, demonstrating robust generalization abilities. |
| 35 | Raw2Drive: Reinforcement Learning with Aligned World Models for End-to-End Autonomous Driving (in CARLA v2) | 2025-05-22 | 展开Reinforcement Learning (RL) can mitigate the causal confusion and distribution shift inherent to imitation learning (IL). However, applying RL to end-to-end autonomous driving (E2E-AD) remains an open problem for its training difficulty, and IL is still the mainstream paradigm in both academia and industry. Recently Model-based Reinforcement Learning (MBRL) have demonstrated promising results in neural planning; however, these methods typically require privileged information as input rather than raw sensor data. We fill this gap by designing Raw2Drive, a dual-stream MBRL approach. Initially, we efficiently train an auxiliary privileged world model paired with a neural planner that uses privileged information as input. Subsequently, we introduce a raw sensor world model trained via our proposed Guidance Mechanism, which ensures consistency between the raw sensor world model and the privileged world model during rollouts. Finally, the raw sensor world model combines the prior knowledge embedded in the heads of the privileged world model to effectively guide the training of the raw sensor policy. Raw2Drive is so far the only RL based end-to-end method on CARLA Leaderboard 2.0, and Bench2Drive and it achieves state-of-the-art performance. |
| 36 | Learning Knowledge-based Prompts for Robust 3D Mask Presentation Attack Detection | 2025-05-06 | 展开3D mask presentation attack detection is crucial for protecting face recognition systems against the rising threat of 3D mask attacks. While most existing methods utilize multimodal features or remote photoplethysmography (rPPG) signals to distinguish between real faces and 3D masks, they face significant challenges, such as the high costs associated with multimodal sensors and limited generalization ability. Detection-related text descriptions offer concise, universal information and are cost-effective to obtain. However, the potential of vision-language multimodal features for 3D mask presentation attack detection remains unexplored. In this paper, we propose a novel knowledge-based prompt learning framework to explore the strong generalization capability of vision-language models for 3D mask presentation attack detection. Specifically, our approach incorporates entities and triples from knowledge graphs into the prompt learning process, generating fine-grained, task-specific explicit prompts that effectively harness the knowledge embedded in pre-trained vision-language models. Furthermore, considering different input images may emphasize distinct knowledge graph elements, we introduce a visual-specific knowledge filter based on an attention mechanism to refine relevant elements according to the visual context. Additionally, we leverage causal graph theory insights into the prompt learning process to further enhance the generalization ability of our method. During training, a spurious correlation elimination paradigm is employed, which removes category-irrelevant local image patches using guidance from knowledge-based text features, fostering the learning of generalized causal prompts that align with category-relevant local patches. Experimental results demonstrate that the proposed method achieves state-of-the-art intra- and cross-scenario detection performance on benchmark datasets. |
| 37 | Empowering Agentic Video Analytics Systems with Video Language Models | 2025-05-01 | 展开AI-driven video analytics has become increasingly important across diverse domains. However, existing systems are often constrained to specific, predefined tasks, limiting their adaptability in open-ended analytical scenarios. The recent emergence of Vision Language Models (VLMs) as transformative technologies offers significant potential for enabling open-ended video understanding, reasoning, and analytics. Nevertheless, their limited context windows present challenges when processing ultra-long video content, which is prevalent in real-world applications. To address this, we introduce AVA, a VLM-powered system designed for open-ended, advanced video analytics. AVA incorporates two key innovations: (1) the near real-time construction of Event Knowledge Graphs (EKGs) for efficient indexing of long or continuous video streams, and (2) an agentic retrieval-generation mechanism that leverages EKGs to handle complex and diverse queries. Comprehensive evaluations on public benchmarks, LVBench and VideoMME-Long, demonstrate that AVA achieves state-of-the-art performance, attaining 62.3% and 64.1% accuracy, respectively-significantly surpassing existing VLM and video Retrieval-Augmented Generation (RAG) systems. Furthermore, to evaluate video analytics in ultra-long and open-world video scenarios, we introduce a new benchmark, AVA-100. This benchmark comprises 8 videos, each exceeding 10 hours in duration, along with 120 manually annotated, diverse, and complex question-answer pairs. On AVA-100, AVA achieves top-tier performance with an accuracy of 75.8%. The source code of AVA is available at https://github.com/I-ESC/Project-Ava. The AVA-100 benchmark can be accessed at https://huggingface.co/datasets/iesc/Ava-100. |
| 38 | Code Digital Twin: Empowering LLMs with Tacit Knowledge for Complex Software Development | 2025-03-11 | 展开Recent advances in large language models (LLMs) have demonstrated strong capabilities in software engineering tasks, raising expectations of revolutionary productivity gains. However, enterprise software development is largely driven by incremental evolution, where challenges extend far beyond routine coding and depend critically on tacit knowledge, including design decisions at different levels and historical trade-offs. To achieve effective AI-powered support for complex software development, we should align emerging AI capabilities with the practical realities of enterprise development. To this end, we systematically identify challenges from both software and LLM perspectives. Alongside these challenges, we outline opportunities where AI and structured knowledge frameworks can enhance decision-making in tasks such as issue localization and impact analysis. To address these needs, we propose the Code Digital Twin, a living framework that models both the physical and conceptual layers of software, preserves tacit knowledge, and co-evolves with the codebase. By integrating hybrid knowledge representations, multi-stage extraction pipelines, incremental updates, LLM-empowered applications, and human-in-the-loop feedback, the Code Digital Twin transforms fragmented knowledge into explicit and actionable representations. Our vision positions it as a bridge between AI advancements and enterprise software realities, providing a concrete roadmap toward sustainable, intelligent, and resilient development and evolution of ultra-complex systems. |
| 39 | Minimalist Market Design: A Framework for Economists with Policy Aspirations | 2023-12-30 | 展开Minimalist market design is an economic design framework developed from the perspective of an outsider -- one seeking to improve real institutions without a commission or official mandate. It offers a structured, "minimally invasive" method for reforming institutions from within: identify their mission as understood by stakeholders, diagnose the root causes of failure, and refine only those elements that compromise that mission. By fixing what is broken and leaving the rest intact, the framework respects the tacit knowledge embedded in long-standing institutions, minimizes unintended consequences, and secures legitimacy that facilitates adoption. Such targeted interventions often call for novel, use-inspired theory tailored to the institutional context. In this way, minimalist market design advances both theory and practice through a reciprocal process fostering collaboration across disciplines and between academic research and real-world practice. Tracing the framework's evolution over twenty-five years of intertwined progress in theory and real-world implementation across a range of matching market applications -- including housing allocation, school choice, living-donor organ exchange for kidney and liver, military branch assignment in the U.S. Army, the allocation of vaccines and therapies during the COVID-19 pandemic, and the allocation of public jobs and college seats under India's reservation system -- this monograph reveals a consistent "less is more" ethos, showing how restrained, precisely targeted reforms can yield substantial policy improvements while advancing fundamental knowledge. |
| 序号 | 标题 | 日期 | 摘要 |
|---|---|---|---|
| 1 | Various Diamond Properties in Combinatorial Game Theory | 2025-09-26 | 展开We investigate conditions under which positions in combinatorial games admit simple values. We introduce a unified diamond framework, the |
| 2 | Xiangqi-R1: Enhancing Spatial Strategic Reasoning in LLMs for Chinese Chess via Reinforcement Learning | 2025-07-16 | 展开Game playing has long served as a fundamental benchmark for evaluating Artificial General Intelligence (AGI). While Large Language Models (LLMs) have demonstrated impressive capabilities in general reasoning, their effectiveness in spatial strategic reasoning, which is critical for complex and fully observable board games, remains insufficiently explored. In this work, we adopt Chinese Chess (Xiangqi) as a challenging and rich testbed due to its intricate rules and spatial complexity. To advance LLMs' strategic competence in such environments, we propose a training framework tailored to Xiangqi, built upon a large-scale dataset of five million board-move pairs enhanced with expert annotations and engine evaluations. Building on this foundation, we introduce Xiangqi-R1, a 7B-parameter model trained in multi-stage manner: (1) fine-tuning for legal move prediction to capture basic spatial rules, (2) incorporating strategic annotations to improve decision-making, and (3) applying reinforcement learning via Group Relative Policy Optimization (GRPO) with multi-dimensional reward signals to enhance reasoning stability. Our Experimental results indicate that, despite their size and power, general-purpose LLMs struggle to achieve satisfactory performance in these tasks. Compared to general-purpose LLMs, Xiangqi-R1 greatly advances with an 18% rise in move legality and a 22% boost in analysis accuracy. Our results point to a promising path for creating general strategic intelligence in spatially complex areas. |
| 3 | On 3-terminal positions in Hex | 2025-07-11 | 展开This paper is about 3-terminal regions in Hex. A 3-terminal region is a region of the Hex board that is completely surrounded by black and white stones, in such a way that the black boundary stones form 3 connected components. We characterize Hex as the universal planar Shannon game of degree 3. This ensures that every Hex position can be decomposed into 3-terminal regions. We then investigate the combinatorial game theory of 3-terminal regions. We show that there are infinitely many distinct Hex-realizable values for such regions. We introduce an infinite family of 3-terminal positions called superswitches and investigate their properties. We also present a database of Hex-realizable 3-terminal values, and illustrate its utility as a problem-solving tool by giving various applications. The applications include the automated verification of connects-both templates and pivoting templates, a new handicap strategy for |
| 4 | A number game reconciliation | 2025-07-07 | 展开Number games play a central role in alternating normal play combinatorial game theory due to their real-number-like properties (Conway 1976). Here we undertake a critical re-examination: we begin with integer and dyadic games and identify subtle inconsistencies and oversights in the established literature (e.g. Siegel 2013), most notably, the lack of distinction between a game being a number and a game being equal to a number. After addressing this, we move to the general theory of number games. We analyze Conway's original definition and a later refinement by Siegel, and highlight conceptual gaps that have largely gone unnoticed. Through a careful dissection of these issues, we propose a more coherent and robust formulation. Specifically, we develop a refined characterization of numbers, via several subclasses, dyadics, canonical forms, their group theoretic closure and zugzwangs, that altogether better capture the essence of number games. This reconciliation not only clarifies existing ambiguities but also uncovers several open problems. |
| 5 | Deep Reinforcement Learning Xiangqi Player with Monte Carlo Tree Search | 2025-06-18 | 展开This paper presents a Deep Reinforcement Learning (DRL) system for Xiangqi (Chinese Chess) that integrates neural networks with Monte Carlo Tree Search (MCTS) to enable strategic self-play and self-improvement. Addressing the underexplored complexity of Xiangqi, including its unique board layout, piece movement constraints, and victory conditions, our approach combines policy-value networks with MCTS to simulate move consequences and refine decision-making. By overcoming challenges such as Xiangqi's high branching factor and asymmetrical piece dynamics, our work advances AI capabilities in culturally significant strategy games while providing insights for adapting DRL-MCTS frameworks to domain-specific rule systems. |
| 6 | Circular Game Coloring of Signed Graphs | 2025-05-27 | 展开We extend the theory of circular game chromatic numbers to signed graphs by defining the invariant |
| 7 | Computational and Algebraic Structure of Board Games | 2025-02-18 | 展开We provide two methodologies in the area of computation theory to solve optimal strategies for board games such as Xi Gua Qi and Go. From experimental results, we find relevance to graph theory, matrix representation, and mathematical consciousness. We prove that the decision strategy of movement for Xi Gua Qi and Chinese checker games belongs to a subset that is neither a ring nor a group over set Y={-1,0,1}. Additionally, the movement for any board game with two players belongs to a subset that is neither a ring nor a group from the razor of Occam. We derive the closed form of the transition matrix for any board game with two players such as chess and Chinese chess. We discover that the element of the transition matrix belongs to a rational number. We propose a different methodology based on algebra theory to analyze the complexity of board games in their entirety, instead of being limited solely to endgame results. It is probable that similar decision processes of people may also belong to a matrix representation that is neither a ring nor a group. |
| 8 | RemoteChess: Enhancing Older Adults' Social Connectedness via Designing a Virtual Reality Chinese Chess (Xiangqi) Community | 2025-02-17 | 展开The decline of social connectedness caused by distance and physical limitations severely affects older adults' well-being and mental health. While virtual reality (VR) is promising for older adults to socialize remotely, existing social VR designs primarily focus on verbal communication (e.g., reminiscent, chat). Actively engaging in shared activities is also an important aspect of social connection. We designed RemoteChess, which constructs a social community and a culturally relevant activity (i.e., Chinese chess) for older adults to play while engaging in social interaction. We conducted a user study with groups of older adults interacting with each other through RemoteChess. Our findings indicate that RemoteChess enhanced participants' social connectedness by offering familiar environments, culturally relevant social catalysts, and asymmetric interactions. We further discussed design guidelines for designing culturally relevant social activities in VR to promote social connectedness for older adults. |
| 9 | Temperatures of Robin Hood | 2025-01-13 | 展开Cumulative Games were introduced by Larsson, Meir, and Zick (2020) to bridge some conceptual and technical gaps between Combinatorial Game Theory (CGT) and Economic Game Theory. The partizan ruleset {\sc Robin Hood} is an instance of a Cumulative Game, viz., {\sc Wealth Nim}. It is played on multiple heaps, each associated with a pair of cumulations, interpreted here as wealth. Each player chooses one of the heaps, removes tokens from that heap not exceeding their own wealth, while simultaneously diminishing the other player's wealth by the same amount. In CGT, the {\em temperature} of a {\em disjunctive sum} game component is an estimate of the urgency of moving first in that component. It turns out that most of the positions of {\sc Robin Hood} are {\em hot}. The temperature of {\sc Robin Hood} on a single large heap shows a dichotomy in behavior depending on the ratio of the wealths of the players. Interestingly, this bifurcation is related to Pingala (Fibonacci) sequences and the Golden Ratio |
| 10 | On Conway's Numbers and Games, the Von Neumann Universe, and Pure Set Theory | 2025-01-08 | 展开We take up Dedekind's question ''Was sind und was sollen die Zahlen?'' (''What are numbers, and would should they be?''), with the aim to describe the place that Conway's (Surreal) Numbers and Games take, or deserve to take, in the whole of mathematics. Rather than just reviewing the work of Conway, and subsequent one by Gonshor, Alling, Ehrlich, and others, we propose a new setting which puts the theory of surreal numbers onto the firm ground of ''pure'' set theory. This approach is closely related to Gonshor's one by ''sign expansions'', but appears to be significantly simpler and clearer, and hopefully may contribute to realizing that ''surreal'' numbers are by no means surrealistic, goofy or wacky. They could, and probably should, play a central role in mathematics. We discuss the interplay between the various approaches to surreal numbers, and analyze the link with Conway's original approach via Combinatorial Game Theory (CGT). To clarify this, we propose to call pure set theory the algebraic theory of pure sets, or in other terms, of the algebraic structures of the von Neumann universe. This topic may be interesting in its own right: it puts CGT into a broad context which has a strong ''quantum flavor'', and where Conway's numbers (as well as their analogue, the nimbers) arise naturally. |
| 11 | Complete Implementation of WXF Chinese Chess Rules | 2024-12-23 | 展开Unlike repetitions in Western Chess where all repetitions are draws, repetitions in Chinese Chess could result in a win, draw, or loss depending on the kind of repetition being made by both players. One of the biggest hurdles facing Chinese Chess application development is a proper system for judging games correctly. This paper introduces a complete algorithm for ruling the WXF rules correctly in all 110 example cases found in the WXF manual. We introduce several novel optimizations for speeding up the repetition handling without compromising the program correctness. This algorithm is usable in engines, and we saw a total increase in playing strength by +10 point rating increase, or an increased 5% winrate when integrating this approach into our prototype engine. |
| 12 | Maker-Breaker on Galton-Watson trees | 2024-12-11 | 展开We consider the following combinatorial two-player game: On the random tree arising from a branching process, each round one player (Breaker) deletes an edge and by that removes the descendant and all its progeny, while the other (Maker) fixates an edge to permanently secure it from deletion. Breaker has won once the tree's root is contained in a finite component, otherwise Maker wins by building an infinite path starting at the root. It will be analyzed both as a positional game (the tree is known to both players at the start) and with more restrictive levels of information (the players essentially explore the tree during the game). Reading the number of available edges for play as a random walk on |
| 13 | Relationship between misère NIM and two-player GOISHI HIROI | 2024-12-05 | 展开In combinatorial game theory, there are two famous winning conventions, normal play and mis`ere play. Under normal play convention, the winner is the player who moves last and under mis`ere play convention, the loser is the player who moves last. The difference makes these conventions completely different, and usually, games under mis`ere play convention is much difficult to analyze than games under normal play convention. In this study, we show an interesting relationship between rulesets under different winning conventions; we can determine the winner of two-player GOISHI HIROI under normal play convention by using NIM under mis`ere play convention. We also analyze two-player GOISHI HIROI under mis`ere play convention. |
| 14 | Mastering Chinese Chess AI (Xiangqi) Without Search | 2024-10-07 | 展开We have developed a high-performance Chinese Chess AI that operates without reliance on search algorithms. This AI has demonstrated the capability to compete at a level commensurate with the top 0.1% of human players. By eliminating the search process typically associated with such systems, this AI achieves a Queries Per Second (QPS) rate that exceeds those of systems based on the Monte Carlo Tree Search (MCTS) algorithm by over a thousandfold and surpasses those based on the AlphaBeta pruning algorithm by more than a hundredfold. The AI training system consists of two parts: supervised learning and reinforcement learning. Supervised learning provides an initial human-like Chinese chess AI, while reinforcement learning, based on supervised learning, elevates the strength of the entire AI to a new level. Based on this training system, we carried out enough ablation experiments and discovered that 1. The same parameter amount of Transformer architecture has a higher performance than CNN on Chinese chess; 2. Possible moves of both sides as features can greatly improve the training process; 3. Selective opponent pool, compared to pure self-play training, results in a faster improvement curve and a higher strength limit. 4. Value Estimation with Cutoff(VECT) improves the original PPO algorithm training process and we will give the explanation. |
| 15 | XQSV: A Structurally Variable Network to Imitate Human Play in Xiangqi | 2024-07-05 | 展开In this paper, we introduce an innovative deep learning architecture, termed Xiangqi Structurally Variable (XQSV), designed to emulate the behavioral patterns of human players in Xiangqi, or Chinese Chess. The unique attribute of XQSV is its capacity to alter its structural configuration dynamically, optimizing performance for the task based on the particular subset of data on which it is trained. We have incorporated several design improvements to significantly enhance the network's predictive accuracy, including a local illegal move filter, an Elo range partitioning, a sequential one-dimensional input, and a simulation of imperfect memory capacity. Empirical evaluations reveal that XQSV attains a predictive accuracy of approximately 40%, with its performance peaking within the trained Elo range. This indicates the model's success in mimicking the play behavior of individuals within that specific range. A three-terminal Turing Test was employed to demonstrate that the XQSV model imitates human behavior more accurately than conventional Xiangqi engines, rendering it indistinguishable from actual human opponents. Given the inherent nondeterminism in human gameplay, we propose two supplementary relaxed evaluation metrics. To our knowledge, XQSV represents the first model to mimic Xiangqi players. |
| 16 | Shogi and Frieze group | 2023-11-15 | 展开Shogi is a traditional Japanese strategy board game in the same family as chess, chaturanga, and xiangqi, and has been theoretically studied from various aspects. The research on recommended sequences of moves in each opening of shogi is called joseki; how to use a rook (Static Rook and Ranging Rook), or how to develop a castle, etc. Also, many pieces of tsume shogi, artistic shogi miniature problems, in which the opponent's king is checkmated by a series of checks, have been created involving various beautiful techniques such as "saw" and "puzzle ring". In addition, the rapid development of AI in recent years has led to the pursuit of the best possible moves in shogi. In this paper, we move away from the study of winning and losing in shogi and focus on the mathematical aspects of the movement of shogi pieces. We propose to correspond movements of shogi pieces to a set of geometrical patterns constructed by the shape of shogi pieces and representing the Frieze group through the condition regarding the neighborhood of arrangements of given shogi pieces. Although the discovery of this correspondence does not lead to a winning strategy for shogi, however, it does demonstrate a curious involvement between the traditional Japanese board game and Western mathematics. |
| 17 | JiangJun: Mastering Xiangqi by Tackling Non-Transitivity in Two-Player Zero-Sum Games | 2023-08-09 | 展开This paper presents an empirical exploration of non-transitivity in perfect-information games, specifically focusing on Xiangqi, a traditional Chinese board game comparable in game-tree complexity to chess and shogi. By analyzing over 10,000 records of human Xiangqi play, we highlight the existence of both transitive and non-transitive elements within the game's strategic structure. To address non-transitivity, we introduce the JiangJun algorithm, an innovative combination of Monte-Carlo Tree Search (MCTS) and Policy Space Response Oracles (PSRO) designed to approximate a Nash equilibrium. We evaluate the algorithm empirically using a WeChat mini program and achieve a Master level with a 99.41% win rate against human players. The algorithm's effectiveness in overcoming non-transitivity is confirmed by a plethora of metrics, such as relative population performance and visualization results. Our project site is available at \url{https://sites.google.com/view/jiangjun-site/}. |
| 18 | Niel's Chess -- Rules for Xiangqi | 2023-06-27 | 展开In this paper, the rules of Niel's Chess are adapted to the game of Xiangqi, following the idea that the River and the Palaces play an important role in restricting and enabling chess pieces in their movements. |
| 19 | On the complexity of Dark Chinese Chess | 2021-12-06 | 展开This paper provides a complexity analysis for the game of dark Chinese chess (a.k.a. "JieQi"), a variation of Chinese chess. Dark Chinese chess combines some of the most complicated aspects of board and card games, such as long-term strategy or planning, large state space, stochastic, and imperfect-information, which make it closer to the real world decision-making problem and pose great challenges to game AI. Here we design a self-play program to calculate the game tree complexity and average information set size of the game, and propose an algorithm to calculate the number of information sets. |
| 序号 | 标题 | 日期 | 摘要 |
|---|---|---|---|
| 1 | Gistify! Codebase-Level Understanding via Runtime Execution | 2025-10-30 | 展开As coding agents are increasingly deployed in large codebases, the need to automatically design challenging, codebase-level evaluation is central. We propose Gistify, a task where a coding LLM must create a single, minimal, self-contained file that can reproduce a specific functionality of a codebase. The coding LLM is given full access to a codebase along with a specific entrypoint (e.g., a python command), and the generated file must replicate the output of the same command ran under the full codebase, while containing only the essential components necessary to execute the provided command. Success on Gistify requires both structural understanding of the codebase, accurate modeling of its execution flow as well as the ability to produce potentially large code patches. Our findings show that current state-of-the-art models struggle to reliably solve Gistify tasks, especially ones with long executions traces. |
| 2 | Wisdom and Delusion of LLM Ensembles for Code Generation and Repair | 2025-10-24 | 展开Today's pursuit of a single Large Language Model (LMM) for all software engineering tasks is resource-intensive and overlooks the potential benefits of complementarity, where different models contribute unique strengths. However, the degree to which coding LLMs complement each other and the best strategy for maximizing an ensemble's potential are unclear, leaving practitioners without a clear path to move beyond single-model systems. To address this gap, we empirically compare ten individual LLMs from five families, and three ensembles of these LLMs across three software engineering benchmarks covering code generation and program repair. We assess the complementarity between models and the performance gap between the best individual model and the ensembles. Next, we evaluate various selection heuristics to identify correct solutions from an ensemble's candidate pool. We find that the theoretical upperbound for an ensemble's performance can be 83% above the best single model. Our results show that consensus-based strategies for selecting solutions fall into a "popularity trap," amplifying common but incorrect outputs. In contrast, a diversity-based strategy realizes up to 95% of this theoretical potential, and proves effective even in small two-model ensembles, enabling a cost-efficient way to enhance performance by leveraging multiple LLMs. |
| 3 | Review of Tools for Zero-Code LLM Based Application Development | 2025-10-22 | 展开Large Language Models (LLMs) are transforming software creation by enabling zero code development platforms. Our survey reviews recent platforms that let users build applications without writing code, by leveraging LLMs as the brains of the development process. We adopt a broad survey methodology, categorizing platforms based on key dimensions such as interface style, backend integration, output type, and extensibility. We analyze both dedicated LLM based app builders (OpenAI's custom GPTs, Bolt.new, Dust.tt, Flowise, Cognosys) and general no code platforms (e.g., Bubble, Glide) that integrate LLM capabilities. We present a taxonomy categorizing these platforms by their interface (conversational, visual, etc.), supported LLM backends, output type (chatbot, full application, workflow), and degree of extensibility. Core features such as autonomous agents, memory management, workflow orchestration, and API integrations are in scope of the survey. We provide a detailed comparison, highlighting each platform's strengths and limitations. Trade offs (customizability, scalability, vendor lock-in) are discussed in comparison with traditional and low code development approaches. Finally, we outline future directions, including multimodal interfaces, on device LLMs, and improved orchestration for democratizing app creation with AI. Our findings indicate that while zero code LLM platforms greatly reduce the barrier to creating AI powered applications, they still face challenges in flexibility and reliability. Overall, the landscape is rapidly evolving, offering exciting opportunities to empower non programmers to create sophisticated software. |
| 4 | LLavaCode: Compressed Code Representations for Retrieval-Augmented Code Generation | 2025-10-22 | 展开Retrieval-augmented generation has emerged as one of the most effective approaches for code completion, particularly when context from a surrounding repository is essential. However, incorporating context significantly extends sequence length, leading to slower inference - a critical limitation for interactive settings such as IDEs. In this work, we introduce LlavaCode, a framework that compresses code into compact, semantically rich representations interpretable by code LLM, enhancing generation quality while reducing the retrieved context to only a few compressed single-token vectors. Using a small projector module we can significantly increase the EM and ES metrics of coding model with negligible latency increase. Our experiments demonstrate that compressed context enables 20-38% reduction in Time-to-First-Token (TTFT) on line completion tasks compared to full-RAG pipelines. |
| 5 | TREAT: A Code LLMs Trustworthiness / Reliability Evaluation and Testing Framework | 2025-10-20 | 展开Large foundation models are fundamentally transforming the software engineering landscape, demonstrating exceptional capabilities across diverse tasks such as code generation, debugging, and testing. Despite this rapid progress, a significant gap remains in how to comprehensively evaluate these models' trustworthiness in real-world software engineering scenarios. Existing benchmarks suffer from limited task scope and fail to incorporate critical evaluation aspects such as the robustness and reliability of models. To bridge this gap, we present an evaluation framework called TREAT (Code LLMs Trustworthiness / Reliability Evaluation And Testing) that provides a holistic assessment of model performance in code intelligence tasks. Our evaluation framework addresses key limitations in existing approaches with four main improvements: (1) Multi-Task Holistic Evaluation that spans diverse software engineering activities rather than limited coding tasks; (2) Multi-Language and Multi-Modality Assessment that extends beyond traditional single-language, text-only benchmarks to include multi-modality coding tasks; (3) Robustness Assessment that evaluates model reliability under semantically-preserving code transformations; and (4) Rigorous Evaluation Methodology that enhances the trustworthiness of evaluation results through diverse evaluation prompts and adaptive solution extraction. Based on this evaluation framework, we assess 26 state-of-the-art models and uncover both their strengths and limitations, yielding several key insights:(1) Current models show substantial performance variation across programming tasks; (2) Multi-modal language models demonstrate specific performance limitations in UI code generation and edit; |
| 6 | TokDrift: When LLM Speaks in Subwords but Code Speaks in Grammar | 2025-10-16 | 展开Large language models (LLMs) for code rely on subword tokenizers, such as byte-pair encoding (BPE), learned from mixed natural language text and programming language code but driven by statistics rather than grammar. As a result, semantically identical code snippets can be tokenized differently depending on superficial factors such as whitespace or identifier naming. To measure the impact of this misalignment, we introduce TokDrift, a framework that applies semantic-preserving rewrite rules to create code variants differing only in tokenization. Across nine code LLMs, including large ones with over 30B parameters, even minor formatting changes can cause substantial shifts in model behavior. Layer-wise analysis shows that the issue originates in early embeddings, where subword segmentation fails to capture grammar token boundaries. Our findings identify misaligned tokenization as a hidden obstacle to reliable code understanding and generation, highlighting the need for grammar-aware tokenization for future code LLMs. |
| 7 | LongCodeBench: Evaluating Coding LLMs at 1M Context Windows | 2025-05-12 | 展开Context lengths for models have grown rapidly, from thousands to millions of tokens in just a few years. The extreme context sizes of modern long-context models have made it difficult to construct realistic long-context benchmarks -- not only due to the cost of collecting million-context tasks but also in identifying realistic scenarios that require significant contexts. We identify code comprehension and repair as a natural testbed and challenge task for long-context models and introduce LongCodeBench (LCB), a benchmark to test LLM coding abilities in long-context scenarios. Our benchmark tests both the comprehension and repair capabilities of LCLMs in realistic and important settings by drawing from real-world GitHub issues and constructing QA (LongCodeQA) and bug fixing (LongSWE-Bench) tasks. We carefully stratify the complexity of our benchmark, enabling us to evaluate models across different scales -- ranging from Qwen2.5 14B Instruct to Google's flagship Gemini model. We find that long-context remains a weakness for all models, with performance drops such as from 29% to 3% for Claude 3.5 Sonnet, or from 70.2% to 40% for Qwen2.5. The LCB dataset is available publicly at https://huggingface.co/datasets/Steefano/LCB and the codebase to replicate the work on this paper at https://github.com/Zteefano/long-code-bench. |
| 序号 | 标题 | 日期 | 摘要 |
|---|---|---|---|
| 1 | HMM for short independent sequences: Multiple sequence Baum-Welch application | 2025-10-30 | 展开In the classical setting, the training of a Hidden Markov Model (HMM) typically relies on a single, sufficiently long observation sequence that can be regarded as representative of the underlying stochastic process. In this context, the Expectation Maximization (EM) algorithm is applied in its specialized form for HMMs, namely the Baum Welch algorithm, which has been extensively employed in applications such as speech recognition. The objective of this work is to present pseudocode formulations for both the training and decoding procedures of HMMs in a different scenario, where the available data consist of multiple independent temporal sequences generated by the same model, each of relatively short duration, i.e., containing only a limited number of samples. Special emphasis is placed on the relevance of this formulation to longitudinal studies in population health, where datasets are naturally structured as collections of short trajectories across individuals with point data at follow up. |
| 2 | POWSM: A Phonetic Open Whisper-Style Speech Foundation Model | 2025-10-28 | 展开Recent advances in spoken language processing have led to substantial progress in phonetic tasks such as automatic speech recognition (ASR), phone recognition (PR), grapheme-to-phoneme conversion (G2P), and phoneme-to-grapheme conversion (P2G). Despite their conceptual similarity, these tasks have largely been studied in isolation, each relying on task-specific architectures and datasets. In this paper, we introduce POWSM (Phonetic Open Whisper-style Speech Model), the first unified framework capable of jointly performing multiple phone-related tasks. POWSM enables seamless conversion between audio, text (graphemes), and phones, opening up new possibilities for universal and low-resource speech processing. Our model outperforms or matches specialized PR models of similar size (Wav2Vec2Phoneme and ZIPA) while jointly supporting G2P, P2G, and ASR. Our training data, code and models are released to foster open science. |
| 3 | BEST-RQ-Based Self-Supervised Learning for Whisper Domain Adaptation | 2025-10-28 | 展开Automatic Speech Recognition (ASR) systems, despite large multilingual training, struggle in out-of-domain and low-resource scenarios where labeled data is scarce. We propose BEARD (BEST-RQ Encoder Adaptation with Re-training and Distillation), a novel framework designed to adapt Whisper's encoder using unlabeled data. Unlike traditional self-supervised learning methods, BEARD uniquely combines a BEST-RQ objective with knowledge distillation from a frozen teacher encoder, ensuring the encoder's complementarity with the pre-trained decoder. Our experiments focus on the ATCO2 corpus from the challenging Air Traffic Control (ATC) communications domain, characterized by non-native speech, noise, and specialized phraseology. Using about 5,000 hours of untranscribed speech for BEARD and 2 hours of transcribed speech for fine-tuning, the proposed approach significantly outperforms previous baseline and fine-tuned model, achieving a relative improvement of 12% compared to the fine-tuned model. To the best of our knowledge, this is the first work to use a self-supervised learning objective for domain adaptation of Whisper. |
| 4 | Audio Signal Processing Using Time Domain Mel-Frequency Wavelet Coefficient | 2025-10-28 | 展开Extracting features from the speech is the most critical process in speech signal processing. Mel Frequency Cepstral Coefficients (MFCC) are the most widely used features in the majority of the speaker and speech recognition applications, as the filtering in this feature is similar to the filtering taking place in the human ear. But the main drawback of this feature is that it provides only the frequency information of the signal but does not provide the information about at what time which frequency is present. The wavelet transform, with its flexible time-frequency window, provides time and frequency information of the signal and is an appropriate tool for the analysis of non-stationary signals like speech. On the other hand, because of its uniform frequency scaling, a typical wavelet transform may be less effective in analysing speech signals, have poorer frequency resolution in low frequencies, and be less in line with human auditory perception. Hence, it is necessary to develop a feature that incorporates the merits of both MFCC and wavelet transform. A great deal of studies are trying to combine both these features. The present Wavelet Transform based Mel-scaled feature extraction methods require more computation when a wavelet transform is applied on top of Mel-scale filtering, since it adds extra processing steps. Here we are proposing a method to extract Mel scale features in time domain combining the concept of wavelet transform, thus reducing the computational burden of time-frequency conversion and the complexity of wavelet extraction. Combining our proposed Time domain Mel frequency Wavelet Coefficient(TMFWC) technique with the reservoir computing methodology has significantly improved the efficiency of audio signal processing. |
| 5 | Are ASR foundation models generalized enough to capture features of regional dialects for low-resource languages? | 2025-10-27 | 展开Conventional research on speech recognition modeling relies on the canonical form for most low-resource languages while automatic speech recognition (ASR) for regional dialects is treated as a fine-tuning task. To investigate the effects of dialectal variations on ASR we develop a 78-hour annotated Bengali Speech-to-Text (STT) corpus named Ben-10. Investigation from linguistic and data-driven perspectives shows that speech foundation models struggle heavily in regional dialect ASR, both in zero-shot and fine-tuned settings. We observe that all deep learning methods struggle to model speech data under dialectal variations but dialect specific model training alleviates the issue. Our dataset also serves as a out of-distribution (OOD) resource for ASR modeling under constrained resources in ASR algorithms. The dataset and code developed for this project are publicly available |
| 6 | SimulMEGA: MoE Routers are Advanced Policy Makers for Simultaneous Speech Translation | 2025-09-01 | 展开Simultaneous Speech Translation (SimulST) enables real-time cross-lingual communication by jointly optimizing speech recognition and machine translation under strict latency constraints. Existing systems struggle to balance translation quality, latency, and semantic coherence, particularly in multilingual many-to-many scenarios where divergent read and write policies hinder unified strategy learning. In this paper, we present SimulMEGA (Simultaneous Generation by Mixture-of-Experts Gating), an unsupervised policy learning framework that combines prefix-based training with a Mixture-of-Experts refiner to learn effective read and write decisions in an implicit manner, without adding inference-time overhead. Our design requires only minimal modifications to standard transformer architectures and generalizes across both speech-to-text and text-to-speech streaming tasks. Through comprehensive evaluation on six language pairs, our 500M parameter speech-to-text model outperforms the Seamless baseline, achieving under 7 percent BLEU degradation at 1.5 seconds average lag and under 3 percent at 3 seconds. We further demonstrate the versatility of SimulMEGA by extending it to streaming TTS with a unidirectional backbone, yielding superior latency quality tradeoffs. |
| 7 | Application of Whisper in Clinical Practice: the Post-Stroke Speech Assessment during a Naming Task | 2025-07-23 | 展开Detailed assessment of language impairment following stroke remains a cognitively complex and clinician-intensive task, limiting timely and scalable diagnosis. Automatic Speech Recognition (ASR) foundation models offer a promising pathway to augment human evaluation through intelligent systems, but their effectiveness in the context of speech and language impairment remains uncertain. In this study, we evaluate whether Whisper, a state-of-the-art ASR foundation model, can be applied to transcribe and analyze speech from patients with stroke during a commonly used picture-naming task. We assess both verbatim transcription accuracy and the model's ability to support downstream prediction of language function, which has major implications for outcomes after stroke. Our results show that the baseline Whisper model performs poorly on single-word speech utterances. Nevertheless, fine-tuning Whisper significantly improves transcription accuracy (reducing Word Error Rate by 87.72% in healthy speech and 71.22% in speech from patients). Further, learned representations from the model enable accurate prediction of speech quality (average F1 Macro of 0.74 for healthy, 0.75 for patients). However, evaluations on an unseen (TORGO) dataset reveal limited generalizability, highlighting the inability of Whisper to perform zero-shot transcription of single-word utterances on out-of-domain clinical speech and emphasizing the need to adapt models to specific clinical populations. While challenges remain in cross-domain generalization, these findings highlight the potential of foundation models, when appropriately fine-tuned, to advance automated speech and language assessment and rehabilitation for stroke-related impairments. |
| 8 | Speak & Spell: LLM-Driven Controllable Phonetic Error Augmentation for Robust Dialogue State Tracking | 2024-09-10 | 展开Dialogue State Tracking (DST) is a key part of task-oriented dialogue systems, identifying important information in conversations. However, its accuracy drops significantly in spoken dialogue environments due to named entity errors from Automatic Speech Recognition (ASR) systems. We introduce a simple yet effective data augmentation method that targets those entities to improve the robustness of DST model. Our novel method can control the placement of errors using keyword-highlighted prompts while introducing phonetically similar errors. As a result, our method generated sufficient error patterns on keywords, leading to improved accuracy in noised and low-accuracy ASR environments. |
| 序号 | 标题 | 日期 | 摘要 |
|---|---|---|---|
| 1 | Sketch2PoseNet: Efficient and Generalized Sketch to 3D Human Pose Prediction | 2025-10-30 | 展开3D human pose estimation from sketches has broad applications in computer animation and film production. Unlike traditional human pose estimation, this task presents unique challenges due to the abstract and disproportionate nature of sketches. Previous sketch-to-pose methods, constrained by the lack of large-scale sketch-3D pose annotations, primarily relied on optimization with heuristic rules-an approach that is both time-consuming and limited in generalizability. To address these challenges, we propose a novel approach leveraging a "learn from synthesis" strategy. First, a diffusion model is trained to synthesize sketch images from 2D poses projected from 3D human poses, mimicking disproportionate human structures in sketches. This process enables the creation of a synthetic dataset, SKEP-120K, consisting of 120k accurate sketch-3D pose annotation pairs across various sketch styles. Building on this synthetic dataset, we introduce an end-to-end data-driven framework for estimating human poses and shapes from diverse sketch styles. Our framework combines existing 2D pose detectors and generative diffusion priors for sketch feature extraction with a feed-forward neural network for efficient 2D pose estimation. Multiple heuristic loss functions are incorporated to guarantee geometric coherence between the derived 3D poses and the detected 2D poses while preserving accurate self-contacts. Qualitative, quantitative, and subjective evaluations collectively show that our model substantially surpasses previous ones in both estimation accuracy and speed for sketch-to-pose tasks. |
| 2 | JOGS: Joint Optimization of Pose Estimation and 3D Gaussian Splatting | 2025-10-30 | 展开Traditional novel view synthesis methods heavily rely on external camera pose estimation tools such as COLMAP, which often introduce computational bottlenecks and propagate errors. To address these challenges, we propose a unified framework that jointly optimizes 3D Gaussian points and camera poses without requiring pre-calibrated inputs. Our approach iteratively refines 3D Gaussian parameters and updates camera poses through a novel co-optimization strategy, ensuring simultaneous improvements in scene reconstruction fidelity and pose accuracy. The key innovation lies in decoupling the joint optimization into two interleaved phases: first, updating 3D Gaussian parameters via differentiable rendering with fixed poses, and second, refining camera poses using a customized 3D optical flow algorithm that incorporates geometric and photometric constraints. This formulation progressively reduces projection errors, particularly in challenging scenarios with large viewpoint variations and sparse feature distributions, where traditional methods struggle. Extensive evaluations on multiple datasets demonstrate that our approach significantly outperforms existing COLMAP-free techniques in reconstruction quality, and also surpasses the standard COLMAP-based baseline in general. |
| 3 | STITCH 2.0: Extending Augmented Suturing with EKF Needle Estimation and Thread Management | 2025-10-29 | 展开Surgical suturing is a high-precision task that impacts patient healing and scarring. Suturing skill varies widely between surgeons, highlighting the need for robot assistance. Previous robot suturing works, such as STITCH 1.0 [1], struggle to fully close wounds due to inaccurate needle tracking and poor thread management. To address these challenges, we present STITCH 2.0, an elevated augmented dexterity pipeline with seven improvements including: improved EKF needle pose estimation, new thread untangling methods, and an automated 3D suture alignment algorithm. Experimental results over 15 trials find that STITCH 2.0 on average achieves 74.4% wound closure with 4.87 sutures per trial, representing 66% more sutures in 38% less time compared to the previous baseline. When two human interventions are allowed, STITCH 2.0 averages six sutures with 100% wound closure rate. Project website: https://stitch-2.github.io/ |
| 4 | GeVI-SLAM: Gravity-Enhanced Stereo Visua Inertial SLAM for Underwater Robots | 2025-10-28 | 展开Accurate visual inertial simultaneous localization and mapping (VI SLAM) for underwater robots remains a significant challenge due to frequent visual degeneracy and insufficient inertial measurement unit (IMU) motion excitation. In this paper, we present GeVI-SLAM, a gravity-enhanced stereo VI SLAM system designed to address these issues. By leveraging the stereo camera's direct depth estimation ability, we eliminate the need to estimate scale during IMU initialization, enabling stable operation even under low acceleration dynamics. With precise gravity initialization, we decouple the pitch and roll from the pose estimation and solve a 4 degrees of freedom (DOF) Perspective-n-Point (PnP) problem for pose tracking. This allows the use of a minimal 3-point solver, which significantly reduces computational time to reject outliers within a Random Sample Consensus framework. We further propose a bias-eliminated 4-DOF PnP estimator with provable consistency, ensuring the relative pose converges to the true value as the feature number increases. To handle dynamic motion, we refine the full 6-DOF pose while jointly estimating the IMU covariance, enabling adaptive weighting of the gravity prior. Extensive experiments on simulated and real-world data demonstrate that GeVI-SLAM achieves higher accuracy and greater stability compared to state-of-the-art methods. |
| 5 | Capturing Head Avatar with Hand Contacts from a Monocular Video | 2025-10-20 | 展开Photorealistic 3D head avatars are vital for telepresence, gaming, and VR. However, most methods focus solely on facial regions, ignoring natural hand-face interactions, such as a hand resting on the chin or fingers gently touching the cheek, which convey cognitive states like pondering. In this work, we present a novel framework that jointly learns detailed head avatars and the non-rigid deformations induced by hand-face interactions. There are two principal challenges in this task. First, naively tracking hand and face separately fails to capture their relative poses. To overcome this, we propose to combine depth order loss with contact regularization during pose tracking, ensuring correct spatial relationships between the face and hand. Second, no publicly available priors exist for hand-induced deformations, making them non-trivial to learn from monocular videos. To address this, we learn a PCA basis specific to hand-induced facial deformations from a face-hand interaction dataset. This reduces the problem to estimating a compact set of PCA parameters rather than a full spatial deformation field. Furthermore, inspired by physics-based simulation, we incorporate a contact loss that provides additional supervision, significantly reducing interpenetration artifacts and enhancing the physical plausibility of the results. We evaluate our approach on RGB(D) videos captured by an iPhone. Additionally, to better evaluate the reconstructed geometry, we construct a synthetic dataset of avatars with various types of hand interactions. We show that our method can capture better appearance and more accurate deforming geometry of the face than SOTA surface reconstruction methods. |
| 6 | SPLite Hand: Sparsity-Aware Lightweight 3D Hand Pose Estimation | 2025-10-18 | 展开With the increasing ubiquity of AR/VR devices, the deployment of deep learning models on edge devices has become a critical challenge. These devices require real-time inference, low power consumption, and minimal latency. Many framework designers face the conundrum of balancing efficiency and performance. We design a light framework that adopts an encoder-decoder architecture and introduces several key contributions aimed at improving both efficiency and accuracy. We apply sparse convolution on a ResNet-18 backbone to exploit the inherent sparsity in hand pose images, achieving a 42% end-to-end efficiency improvement. Moreover, we propose our SPLite decoder. This new architecture significantly boosts the decoding process's frame rate by 3.1x on the Raspberry Pi 5, while maintaining accuracy on par. To further optimize performance, we apply quantization-aware training, reducing memory usage while preserving accuracy (PA-MPJPE increases only marginally from 9.0 mm to 9.1 mm on FreiHAND). Overall, our system achieves a 2.98x speed-up on a Raspberry Pi 5 CPU (BCM2712 quad-core Arm A76 processor). Our method is also evaluated on compound benchmark datasets, demonstrating comparable accuracy to state-of-the-art approaches while significantly enhancing computational efficiency. |
| 7 | Autonomous Legged Mobile Manipulation for Lunar Surface Operations via Constrained Reinforcement Learning | 2025-10-14 | 展开Robotics plays a pivotal role in planetary science and exploration, where autonomous and reliable systems are crucial due to the risks and challenges inherent to space environments. The establishment of permanent lunar bases demands robotic platforms capable of navigating and manipulating in the harsh lunar terrain. While wheeled rovers have been the mainstay for planetary exploration, their limitations in unstructured and steep terrains motivate the adoption of legged robots, which offer superior mobility and adaptability. This paper introduces a constrained reinforcement learning framework designed for autonomous quadrupedal mobile manipulators operating in lunar environments. The proposed framework integrates whole-body locomotion and manipulation capabilities while explicitly addressing critical safety constraints, including collision avoidance, dynamic stability, and power efficiency, in order to ensure robust performance under lunar-specific conditions, such as reduced gravity and irregular terrain. Experimental results demonstrate the framework's effectiveness in achieving precise 6D task-space end-effector pose tracking, achieving an average positional accuracy of 4 cm and orientation accuracy of 8.1 degrees. The system consistently respects both soft and hard constraints, exhibiting adaptive behaviors optimized for lunar gravity conditions. This work effectively bridges adaptive learning with essential mission-critical safety requirements, paving the way for advanced autonomous robotic explorers for future lunar missions. |
| 8 | Gesplat: Robust Pose-Free 3D Reconstruction via Geometry-Guided Gaussian Splatting | 2025-10-11 | 展开Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have advanced 3D reconstruction and novel view synthesis, but remain heavily dependent on accurate camera poses and dense viewpoint coverage. These requirements limit their applicability in sparse-view settings, where pose estimation becomes unreliable and supervision is insufficient. To overcome these challenges, we introduce Gesplat, a 3DGS-based framework that enables robust novel view synthesis and geometrically consistent reconstruction from unposed sparse images. Unlike prior works that rely on COLMAP for sparse point cloud initialization, we leverage the VGGT foundation model to obtain more reliable initial poses and dense point clouds. Our approach integrates several key innovations: 1) a hybrid Gaussian representation with dual position-shape optimization enhanced by inter-view matching consistency; 2) a graph-guided attribute refinement module to enhance scene details; and 3) flow-based depth regularization that improves depth estimation accuracy for more effective supervision. Comprehensive quantitative and qualitative experiments demonstrate that our approach achieves more robust performance on both forward-facing and large-scale complex datasets compared to other pose-free methods. |
| 9 | Wrist2Finger: Sensing Fingertip Force for Force-Aware Hand Interaction with a Ring-Watch Wearable | 2025-10-05 | 展开Hand pose tracking is essential for advancing applications in human-computer interaction. Current approaches, such as vision-based systems and wearable devices, face limitations in portability, usability, and practicality. We present a novel wearable system that reconstructs 3D hand pose and estimates per-finger forces using a minimal ring-watch sensor setup. A ring worn on the finger integrates an inertial measurement unit (IMU) to capture finger motion, while a smartwatch-based single-channel electromyography (EMG) sensor on the wrist detects muscle activations. By leveraging the complementary strengths of motion sensing and muscle signals, our approach achieves accurate hand pose tracking and grip force estimation in a compact wearable form factor. We develop a dual-branch transformer network that fuses IMU and EMG data with cross-modal attention to predict finger joint positions and forces simultaneously. A custom loss function imposes kinematic constraints for smooth force variation and realistic force saturation. Evaluation with 20 participants performing daily object interaction gestures demonstrates an average Mean Per Joint Position Error (MPJPE) of 0.57 cm and a fingertip force estimation (RMSE: 0.213, r=0.76). We showcase our system in a real-time Unity application, enabling virtual hand interactions that respond to user-applied forces. This minimal, force-aware tracking system has broad implications for VR/AR, assistive prosthetics, and ergonomic monitoring. |
| 10 | When Tracking Fails: Analyzing Failure Modes of SAM2 for Point-Based Tracking in Surgical Videos | 2025-10-02 | 展开Video object segmentation (VOS) models such as SAM2 offer promising zero-shot tracking capabilities for surgical videos using minimal user input. Among the available input types, point-based tracking offers an efficient and low-cost alternative, yet its reliability and failure cases in complex surgical environments are not well understood. In this work, we systematically analyze the failure modes of point-based tracking in laparoscopic cholecystectomy videos. Focusing on three surgical targets, the gallbladder, grasper, and L-hook electrocautery, we compare the performance of point-based tracking with segmentation mask initialization. Our results show that point-based tracking is competitive for surgical tools but consistently underperforms for anatomical targets, where tissue similarity and ambiguous boundaries lead to failure. Through qualitative analysis, we reveal key factors influencing tracking outcomes and provide several actionable recommendations for selecting and placing tracking points to improve performance in surgical video analysis. |
| 11 | Enabling High-Frequency Cross-Modality Visual Positioning Service for Accurate Drone Landing | 2025-10-01 | 展开After years of growth, drone-based delivery is transforming logistics. At its core, real-time 6-DoF drone pose tracking enables precise flight control and accurate drone landing. With the widespread availability of urban 3D maps, the Visual Positioning Service (VPS), a mobile pose estimation system, has been adapted to enhance drone pose tracking during the landing phase, as conventional systems like GPS are unreliable in urban environments due to signal attenuation and multi-path propagation. However, deploying the current VPS on drones faces limitations in both estimation accuracy and efficiency. In this work, we redesign drone-oriented VPS with the event camera and introduce EV-Pose to enable accurate, high-frequency 6-DoF pose tracking for accurate drone landing. EV-Pose introduces a spatio-temporal feature-instructed pose estimation module that extracts a temporal distance field to enable 3D point map matching for pose estimation; and a motion-aware hierarchical fusion and optimization scheme to enhance the above estimation in accuracy and efficiency, by utilizing drone motion in the \textit{early stage} of event filtering and the \textit{later stage} of pose optimization. Evaluation shows that EV-Pose achieves a rotation accuracy of 1.34$\degree$ and a translation accuracy of 6.9$mm$ with a tracking latency of 10.08$ms$, outperforming baselines by $>$50%, \tmcrevise{thus enabling accurate drone landings.} Demo: https://ev-pose.github.io/ |
| 12 | User-Centric Communication Service Provision for Edge-Assisted Mobile Augmented Reality | 2025-09-30 | 展开Future 6G networks are envisioned to facilitate edge-assisted mobile augmented reality (MAR) via strengthening the collaboration between MAR devices and edge servers. In order to provide immersive user experiences, MAR devices must timely upload camera frames to an edge server for simultaneous localization and mapping (SLAM)-based device pose tracking. In this paper, to cope with user-specific and non-stationary uplink data traffic, we develop a digital twin (DT)-based approach for user-centric communication service provision for MAR. Specifically, to establish DTs for individual MAR devices, we first construct a data model customized for MAR that captures the intricate impact of the SLAM-based frame uploading mechanism on the user-specific data traffic pattern. We then define two DT operation functions that cooperatively enable adaptive switching between different data-driven models for capturing non-stationary data traffic. Leveraging the user-oriented data management introduced by DTs, we propose an algorithm for network resource management that ensures the timeliness of frame uploading and the robustness against inherent inaccuracies in data traffic modeling for individual MAR devices. Trace-driven simulation results demonstrate that the user-centric communication service provision achieves a 14.2% increase in meeting the camera frame uploading delay requirement in comparison with the slicing-based communication service provision widely used for 5G. |
| 13 | MimicDreamer: Aligning Human and Robot Demonstrations for Scalable VLA Training | 2025-09-26 | 展开Vision Language Action (VLA) models derive their generalization capability from diverse training data, yet collecting embodied robot interaction data remains prohibitively expensive. In contrast, human demonstration videos are far more scalable and cost-efficient to collect, and recent studies confirm their effectiveness in training VLA models. However, a significant domain gap persists between human videos and robot-executed videos, including unstable camera viewpoints, visual discrepancies between human hands and robotic arms, and differences in motion dynamics. To bridge this gap, we propose MimicDreamer, a framework that turns fast, low-cost human demonstrations into robot-usable supervision by jointly aligning vision, viewpoint, and actions to directly support policy training. For visual alignment, we propose H2R Aligner, a video diffusion model that generates high-fidelity robot demonstration videos by transferring motion from human manipulation footage. For viewpoint stabilization, EgoStabilizer is proposed, which canonicalizes egocentric videos via homography and inpaints occlusions and distortions caused by warping. For action alignment, we map human hand trajectories to the robot frame and apply a constrained inverse kinematics solver to produce feasible, low-jitter joint commands with accurate pose tracking. Empirically, VLA models trained purely on our synthesized human-to-robot videos achieve few-shot execution on real robots. Moreover, scaling training with human data significantly boosts performance compared to models trained solely on real robot data; our approach improves the average success rate by 14.7% across six representative manipulation tasks. |
| 14 | MASt3R-Fusion: Integrating Feed-Forward Visual Model with IMU, GNSS for High-Functionality SLAM | 2025-09-25 | 展开Visual SLAM is a cornerstone technique in robotics, autonomous driving and extended reality (XR), yet classical systems often struggle with low-texture environments, scale ambiguity, and degraded performance under challenging visual conditions. Recent advancements in feed-forward neural network-based pointmap regression have demonstrated the potential to recover high-fidelity 3D scene geometry directly from images, leveraging learned spatial priors to overcome limitations of traditional multi-view geometry methods. However, the widely validated advantages of probabilistic multi-sensor information fusion are often discarded in these pipelines. In this work, we propose MASt3R-Fusion,a multi-sensor-assisted visual SLAM framework that tightly integrates feed-forward pointmap regression with complementary sensor information, including inertial measurements and GNSS data. The system introduces Sim(3)-based visualalignment constraints (in the Hessian form) into a universal metric-scale SE(3) factor graph for effective information fusion. A hierarchical factor graph design is developed, which allows both real-time sliding-window optimization and global optimization with aggressive loop closures, enabling real-time pose tracking, metric-scale structure perception and globally consistent mapping. We evaluate our approach on both public benchmarks and self-collected datasets, demonstrating substantial improvements in accuracy and robustness over existing visual-centered multi-sensor SLAM systems. The code will be released open-source to support reproducibility and further research (https://github.com/GREAT-WHU/MASt3R-Fusion). |
| 15 | Seg2Track-SAM2: SAM2-based Multi-object Tracking and Segmentation for Zero-shot Generalization | 2025-09-15 | 展开Autonomous systems require robust Multi-Object Tracking (MOT) capabilities to operate reliably in dynamic environments. MOT ensures consistent object identity assignment and precise spatial delineation. Recent advances in foundation models, such as SAM2, have demonstrated strong zero-shot generalization for video segmentation, but their direct application to MOTS (MOT+Segmentation) remains limited by insufficient identity management and memory efficiency. This work introduces Seg2Track-SAM2, a framework that integrates pre-trained object detectors with SAM2 and a novel Seg2Track module to address track initialization, track management, and reinforcement. The proposed approach requires no fine-tuning and remains detector-agnostic. Experimental results on KITTI MOT and KITTI MOTS benchmarks show that Seg2Track-SAM2 achieves state-of-the-art (SOTA) performance, ranking fourth overall in both car and pedestrian classes on KITTI MOTS, while establishing a new benchmark in association accuracy (AssA). Furthermore, a sliding-window memory strategy reduces memory usage by up to 75% with negligible performance degradation, supporting deployment under resource constraints. These results confirm that Seg2Track-SAM2 advances MOTS by combining robust zero-shot tracking, enhanced identity preservation, and efficient memory utilization. The code is available at https://github.com/hcmr-lab/Seg2Track-SAM2 |
| 16 | HAND Me the Data: Fast Robot Adaptation via Hand Path Retrieval | 2025-05-26 | 展开We hand the community HAND, a simple and time-efficient method for teaching robots new manipulation tasks through human hand demonstrations. Instead of relying on task-specific robot demonstrations collected via teleoperation, HAND uses easy-to-provide hand demonstrations to retrieve relevant behaviors from task-agnostic robot play data. Using a visual tracking pipeline, HAND extracts the motion of the human hand from the hand demonstration and retrieves robot sub-trajectories in two stages: first filtering by visual similarity, then retrieving trajectories with similar behaviors to the hand. Fine-tuning a policy on the retrieved data enables real-time learning of tasks in under four minutes, without requiring calibrated cameras or detailed hand pose estimation. Experiments also show that HAND outperforms retrieval baselines by over 2x in average task success rates on real robots. Videos can be found at our project website: https://liralab.usc.edu/handretrieval/. |
| 17 | Acoustic Neural 3D Reconstruction Under Pose Drift | 2025-03-11 | 展开We consider the problem of optimizing neural implicit surfaces for 3D reconstruction using acoustic images collected with drifting sensor poses. The accuracy of current state-of-the-art 3D acoustic modeling algorithms is highly dependent on accurate pose estimation; small errors in sensor pose can lead to severe reconstruction artifacts. In this paper, we propose an algorithm that jointly optimizes the neural scene representation and sonar poses. Our algorithm does so by parameterizing the 6DoF poses as learnable parameters and backpropagating gradients through the neural renderer and implicit representation. We validated our algorithm on both real and simulated datasets. It produces high-fidelity 3D reconstructions even under significant pose drift. |
| 18 | Faster Model Predictive Control via Self-Supervised Initialization Learning | 2024-08-06 | 展开Optimization for robot control tasks, spanning various methodologies, includes Model Predictive Control (MPC). However, the complexity of the system, such as non-convex and non-differentiable cost functions and prolonged planning horizons often drastically increases the computation time, limiting MPC's real-world applicability. Prior works in speeding up the optimization have limitations on optimizing MPC running time directly and generalizing to hold out domains. To overcome this challenge, we develop a novel framework aiming at expediting optimization processes directly. In our framework, we combine offline self-supervised learning and online fine-tuning to improve the control performance and reduce optimization time. We demonstrate the success of our method on a novel and challenging Formula 1 track driving task. Comparing to single-phase training, our approach achieves a 19.4% reduction in optimization time and a 6.3% improvement in tracking accuracy on zero-shot tracks. |
| 19 | Matching Anything by Segmenting Anything | 2024-06-06 | 展开The robust association of the same objects across video frames in complex scenes is crucial for many applications, especially Multiple Object Tracking (MOT). Current methods predominantly rely on labeled domain-specific video datasets, which limits the cross-domain generalization of learned similarity embeddings. We propose MASA, a novel method for robust instance association learning, capable of matching any objects within videos across diverse domains without tracking labels. Leveraging the rich object segmentation from the Segment Anything Model (SAM), MASA learns instance-level correspondence through exhaustive data transformations. We treat the SAM outputs as dense object region proposals and learn to match those regions from a vast image collection. We further design a universal MASA adapter which can work in tandem with foundational segmentation or detection models and enable them to track any detected objects. Those combinations present strong zero-shot tracking ability in complex domains. Extensive tests on multiple challenging MOT and MOTS benchmarks indicate that the proposed method, using only unlabeled static images, achieves even better performance than state-of-the-art methods trained with fully annotated in-domain video sequences, in zero-shot association. Project Page: https://matchinganything.github.io/ |
| 20 | Multi-Scale Memory Comparison for Zero-/Few-Shot Anomaly Detection | 2023-08-09 | 展开Anomaly detection has gained considerable attention due to its broad range of applications, particularly in industrial defect detection. To address the challenges of data collection, researchers have introduced zero-/few-shot anomaly detection techniques that require minimal normal images for each category. However, complex industrial scenarios often involve multiple objects, presenting a significant challenge. In light of this, we propose a straightforward yet powerful multi-scale memory comparison framework for zero-/few-shot anomaly detection. Our approach employs a global memory bank to capture features across the entire image, while an individual memory bank focuses on simplified scenes containing a single object. The efficacy of our method is validated by its remarkable achievement of 4th place in the zero-shot track and 2nd place in the few-shot track of the Visual Anomaly and Novelty Detection (VAND) competition. |
| 21 | Zero-Shot Anomaly Detection with Pre-trained Segmentation Models | 2023-06-15 | 展开This technical report outlines our submission to the zero-shot track of the Visual Anomaly and Novelty Detection (VAND) 2023 Challenge. Building on the performance of the WINCLIP framework, we aim to enhance the system's localization capabilities by integrating zero-shot segmentation models. In addition, we perform foreground instance segmentation which enables the model to focus on the relevant parts of the image, thus allowing the models to better identify small or subtle deviations. Our pipeline requires no external data or information, allowing for it to be directly applied to new datasets. Our team (Variance Vigilance Vanguard) ranked third in the zero-shot track of the VAND challenge, and achieve an average F1-max score of 81.5/24.2 at a sample/pixel level on the VisA dataset. |
| 22 | APRIL-GAN: A Zero-/Few-Shot Anomaly Classification and Segmentation Method for CVPR 2023 VAND Workshop Challenge Tracks 1&2: 1st Place on Zero-shot AD and 4th Place on Few-shot AD | 2023-05-27 | 展开In this technical report, we briefly introduce our solution for the Zero/Few-shot Track of the Visual Anomaly and Novelty Detection (VAND) 2023 Challenge. For industrial visual inspection, building a single model that can be rapidly adapted to numerous categories without or with only a few normal reference images is a promising research direction. This is primarily because of the vast variety of the product types. For the zero-shot track, we propose a solution based on the CLIP model by adding extra linear layers. These layers are used to map the image features to the joint embedding space, so that they can compare with the text features to generate the anomaly maps. Besides, when the reference images are available, we utilize multiple memory banks to store their features and compare them with the features of the test images during the testing phase. In this challenge, our method achieved first place in the zero-shot track, especially excelling in segmentation with an impressive F1 score improvement of 0.0489 over the second-ranked participant. Furthermore, in the few-shot track, we secured the fourth position overall, with our classification F1 score of 0.8687 ranking first among all participating teams. |
| 23 | Unifying Tracking and Image-Video Object Detection | 2022-11-20 | 展开Objection detection (OD) has been one of the most fundamental tasks in computer vision. Recent developments in deep learning have pushed the performance of image OD to new heights by learning-based, data-driven approaches. On the other hand, video OD remains less explored, mostly due to much more expensive data annotation needs. At the same time, multi-object tracking (MOT) which requires reasoning about track identities and spatio-temporal trajectories, shares similar spirits with video OD. However, most MOT datasets are class-specific (e.g., person-annotated only), which constrains a model's flexibility to perform tracking on other objects. We propose TrIVD (Tracking and Image-Video Detection), the first framework that unifies image OD, video OD, and MOT within one end-to-end model. To handle the discrepancies and semantic overlaps of category labels across datasets, TrIVD formulates detection/tracking as grounding and reasons about object categories via visual-text alignments. The unified formulation enables cross-dataset, multi-task training, and thus equips TrIVD with the ability to leverage frame-level features, video-level spatio-temporal relations, as well as track identity associations. With such joint training, we can now extend the knowledge from OD data, that comes with much richer object category annotations, to MOT and achieve zero-shot tracking capability. Experiments demonstrate that multi-task co-trained TrIVD outperforms single-task baselines across all image/video OD and MOT tasks. We further set the first baseline on the new task of zero-shot tracking. |
| 24 | Exploring the Effectiveness of Self-supervised Learning and Classifier Chains in Emotion Recognition of Nonverbal Vocalizations | 2022-06-21 | 展开We present an emotion recognition system for nonverbal vocalizations (NVs) submitted to the ExVo Few-Shot track of the ICML Expressive Vocalizations Competition 2022. The proposed method uses self-supervised learning (SSL) models to extract features from NVs and uses a classifier chain to model the label dependency between emotions. Experimental results demonstrate that the proposed method can significantly improve the performance of this task compared to several baseline methods. Our proposed method obtained a mean concordance correlation coefficient (CCC) of |
| 25 | The Multi-speaker Multi-style Voice Cloning Challenge 2021 | 2021-04-05 | 展开The Multi-speaker Multi-style Voice Cloning Challenge (M2VoC) aims to provide a common sizable dataset as well as a fair testbed for the benchmarking of the popular voice cloning task. Specifically, we formulate the challenge to adapt an average TTS model to the stylistic target voice with limited data from target speaker, evaluated by speaker identity and style similarity. The challenge consists of two tracks, namely few-shot track and one-shot track, where the participants are required to clone multiple target voices with 100 and 5 samples respectively. There are also two sub-tracks in each track. For sub-track a, to fairly compare different strategies, the participants are allowed to use only the training data provided by the organizer strictly. For sub-track b, the participants are allowed to use any data publicly available. In this paper, we present a detailed explanation on the tasks and data used in the challenge, followed by a summary of submitted systems and evaluation results. |
| 序号 | 标题 | 日期 | 摘要 |
|---|---|---|---|
| 1 | 4-Doodle: Text to 3D Sketches that Move! | 2025-10-29 | 展开We present a novel task: text-to-3D sketch animation, which aims to bring freeform sketches to life in dynamic 3D space. Unlike prior works focused on photorealistic content generation, we target sparse, stylized, and view-consistent 3D vector sketches, a lightweight and interpretable medium well-suited for visual communication and prototyping. However, this task is very challenging: (i) no paired dataset exists for text and 3D (or 4D) sketches; (ii) sketches require structural abstraction that is difficult to model with conventional 3D representations like NeRFs or point clouds; and (iii) animating such sketches demands temporal coherence and multi-view consistency, which current pipelines do not address. Therefore, we propose 4-Doodle, the first training-free framework for generating dynamic 3D sketches from text. It leverages pretrained image and video diffusion models through a dual-space distillation scheme: one space captures multi-view-consistent geometry using differentiable B'ezier curves, while the other encodes motion dynamics via temporally-aware priors. Unlike prior work (e.g., DreamFusion), which optimizes from a single view per step, our multi-view optimization ensures structural alignment and avoids view ambiguity, critical for sparse sketches. Furthermore, we introduce a structure-aware motion module that separates shape-preserving trajectories from deformation-aware changes, enabling expressive motion such as flipping, rotation, and articulated movement. Extensive experiments show that our method produces temporally realistic and structurally stable 3D sketch animations, outperforming existing baselines in both fidelity and controllability. We hope this work serves as a step toward more intuitive and accessible 4D content creation. |
| 2 | TurboPortrait3D: Single-step diffusion-based fast portrait novel-view synthesis | 2025-10-27 | 展开We introduce TurboPortrait3D: a method for low-latency novel-view synthesis of human portraits. Our approach builds on the observation that existing image-to-3D models for portrait generation, while capable of producing renderable 3D representations, are prone to visual artifacts, often lack of detail, and tend to fail at fully preserving the identity of the subject. On the other hand, image diffusion models excel at generating high-quality images, but besides being computationally expensive, are not grounded in 3D and thus are not directly capable of producing multi-view consistent outputs. In this work, we demonstrate that image-space diffusion models can be used to significantly enhance the quality of existing image-to-avatar methods, while maintaining 3D-awareness and running with low-latency. Our method takes a single frontal image of a subject as input, and applies a feedforward image-to-avatar generation pipeline to obtain an initial 3D representation and corresponding noisy renders. These noisy renders are then fed to a single-step diffusion model which is conditioned on input image(s), and is specifically trained to refine the renders in a multi-view consistent way. Moreover, we introduce a novel effective training strategy that includes pre-training on a large corpus of synthetic multi-view data, followed by fine-tuning on high-quality real images. We demonstrate that our approach both qualitatively and quantitatively outperforms current state-of-the-art for portrait novel-view synthesis, while being efficient in time. |
| 3 | TRELLISWorld: Training-Free World Generation from Object Generators | 2025-10-27 | 展开Text-driven 3D scene generation holds promise for a wide range of applications, from virtual prototyping to AR/VR and simulation. However, existing methods are often constrained to single-object generation, require domain-specific training, or lack support for full 360-degree viewability. In this work, we present a training-free approach to 3D scene synthesis by repurposing general-purpose text-to-3D object diffusion models as modular tile generators. We reformulate scene generation as a multi-tile denoising problem, where overlapping 3D regions are independently generated and seamlessly blended via weighted averaging. This enables scalable synthesis of large, coherent scenes while preserving local semantic control. Our method eliminates the need for scene-level datasets or retraining, relies on minimal heuristics, and inherits the generalization capabilities of object-level priors. We demonstrate that our approach supports diverse scene layouts, efficient generation, and flexible editing, establishing a simple yet powerful foundation for general-purpose, language-driven 3D scene construction. |
| 4 | VIST3A: Text-to-3D by Stitching a Multi-view Reconstruction Network to a Video Generator | 2025-10-15 | 展开The rapid progress of large, pretrained models for both visual content generation and 3D reconstruction opens up new possibilities for text-to-3D generation. Intuitively, one could obtain a formidable 3D scene generator if one were able to combine the power of a modern latent text-to-video model as "generator" with the geometric abilities of a recent (feedforward) 3D reconstruction system as "decoder". We introduce VIST3A, a general framework that does just that, addressing two main challenges. First, the two components must be joined in a way that preserves the rich knowledge encoded in their weights. We revisit model stitching, i.e., we identify the layer in the 3D decoder that best matches the latent representation produced by the text-to-video generator and stitch the two parts together. That operation requires only a small dataset and no labels. Second, the text-to-video generator must be aligned with the stitched 3D decoder, to ensure that the generated latents are decodable into consistent, perceptually convincing 3D scene geometry. To that end, we adapt direct reward finetuning, a popular technique for human preference alignment. We evaluate the proposed VIST3A approach with different video generators and 3D reconstruction models. All tested pairings markedly improve over prior text-to-3D models that output Gaussian splats. Moreover, by choosing a suitable 3D base model, VIST3A also enables high-quality text-to-pointmap generation. |
| 5 | Generating Surface for Text-to-3D using 2D Gaussian Splatting | 2025-10-08 | 展开Recent advancements in Text-to-3D modeling have shown significant potential for the creation of 3D content. However, due to the complex geometric shapes of objects in the natural world, generating 3D content remains a challenging task. Current methods either leverage 2D diffusion priors to recover 3D geometry, or train the model directly based on specific 3D representations. In this paper, we propose a novel method named DirectGaussian, which focuses on generating the surfaces of 3D objects represented by surfels. In DirectGaussian, we utilize conditional text generation models and the surface of a 3D object is rendered by 2D Gaussian splatting with multi-view normal and texture priors. For multi-view geometric consistency problems, DirectGaussian incorporates curvature constraints on the generated surface during optimization process. Through extensive experiments, we demonstrate that our framework is capable of achieving diverse and high-fidelity 3D content creation. |
| 6 | OBJVanish: Physically Realizable Text-to-3D Adv. Generation of LiDAR-Invisible Objects | 2025-10-08 | 展开LiDAR-based 3D object detectors are fundamental to autonomous driving, where failing to detect objects poses severe safety risks. Developing effective 3D adversarial attacks is essential for thoroughly testing these detection systems and exposing their vulnerabilities before real-world deployment. However, existing adversarial attacks that add optimized perturbations to 3D points have two critical limitations: they rarely cause complete object disappearance and prove difficult to implement in physical environments. We introduce the text-to-3D adversarial generation method, a novel approach enabling physically realizable attacks that can generate 3D models of objects truly invisible to LiDAR detectors and be easily realized in the real world. Specifically, we present the first empirical study that systematically investigates the factors influencing detection vulnerability by manipulating the topology, connectivity, and intensity of individual pedestrian 3D models and combining pedestrians with multiple objects within the CARLA simulation environment. Building on the insights, we propose the physically-informed text-to-3D adversarial generation (Phy3DAdvGen) that systematically optimizes text prompts by iteratively refining verbs, objects, and poses to produce LiDAR-invisible pedestrians. To ensure physical realizability, we construct a comprehensive object pool containing 13 3D models of real objects and constrain Phy3DAdvGen to generate 3D objects based on combinations of objects in this set. Extensive experiments demonstrate that our approach can generate 3D pedestrians that evade six state-of-the-art (SOTA) LiDAR 3D detectors in both CARLA simulation and physical environments, thereby highlighting vulnerabilities in safety-critical applications. |
| 7 | Towards Scalable and Consistent 3D Editing | 2025-10-03 | 展开3D editing - the task of locally modifying the geometry or appearance of a 3D asset - has wide applications in immersive content creation, digital entertainment, and AR/VR. However, unlike 2D editing, it remains challenging due to the need for cross-view consistency, structural fidelity, and fine-grained controllability. Existing approaches are often slow, prone to geometric distortions, or dependent on manual and accurate 3D masks that are error-prone and impractical. To address these challenges, we advance both the data and model fronts. On the data side, we introduce 3DEditVerse, the largest paired 3D editing benchmark to date, comprising 116,309 high-quality training pairs and 1,500 curated test pairs. Built through complementary pipelines of pose-driven geometric edits and foundation model-guided appearance edits, 3DEditVerse ensures edit locality, multi-view consistency, and semantic alignment. On the model side, we propose 3DEditFormer, a 3D-structure-preserving conditional transformer. By enhancing image-to-3D generation with dual-guidance attention and time-adaptive gating, 3DEditFormer disentangles editable regions from preserved structure, enabling precise and consistent edits without requiring auxiliary 3D masks. Extensive experiments demonstrate that our framework outperforms state-of-the-art baselines both quantitatively and qualitatively, establishing a new standard for practical and scalable 3D editing. Dataset and code will be released. Project: https://www.lv-lab.org/3DEditFormer/ |
| 8 | PAD3R: Pose-Aware Dynamic 3D Reconstruction from Casual Videos | 2025-09-29 | 展开We present PAD3R, a method for reconstructing deformable 3D objects from casually captured, unposed monocular videos. Unlike existing approaches, PAD3R handles long video sequences featuring substantial object deformation, large-scale camera movement, and limited view coverage that typically challenge conventional systems. At its core, our approach trains a personalized, object-centric pose estimator, supervised by a pre-trained image-to-3D model. This guides the optimization of deformable 3D Gaussian representation. The optimization is further regularized by long-term 2D point tracking over the entire input video. By combining generative priors and differentiable rendering, PAD3R reconstructs high-fidelity, articulated 3D representations of objects in a category-agnostic way. Extensive qualitative and quantitative results show that PAD3R is robust and generalizes well across challenging scenarios, highlighting its potential for dynamic scene understanding and 3D content creation. |
| 9 | ReXGroundingCT: A 3D Chest CT Dataset for Segmentation of Findings from Free-Text Reports | 2025-07-29 | 展开We introduce ReXGroundingCT, the first publicly available dataset linking free-text findings to pixel-level 3D segmentations in chest CT scans. The dataset includes 3,142 non-contrast chest CT scans paired with standardized radiology reports from CT-RATE. Construction followed a structured three-stage pipeline. First, GPT-4 was used to extract and standardize findings, descriptors, and metadata from reports originally written in Turkish and machine-translated into English. Second, GPT-4o-mini categorized each finding into a hierarchical ontology of lung and pleural abnormalities. Third, 3D annotations were produced for all CT volumes: the training set was quality-assured by board-certified radiologists, and the validation and test sets were fully annotated by board-certified radiologists. Additionally, a complementary chain-of-thought dataset was created to provide step-by-step hierarchical anatomical reasoning for localizing findings within the CT volume, using GPT-4o and localization coordinates derived from organ segmentation models. ReXGroundingCT contains 16,301 annotated entities across 8,028 text-to-3D-segmentation pairs, covering diverse radiological patterns from 3,142 non-contrast CT scans. About 79% of findings are focal abnormalities and 21% are non-focal. The dataset includes a public validation set of 50 cases and a private test set of 100 cases, both annotated by board-certified radiologists. The dataset establishes a foundation for enabling free-text finding segmentation and grounded radiology report generation in CT imaging. Model performance on the private test set is hosted on a public leaderboard at https://rexrank.ai/ReXGroundingCT. The dataset is available at https://huggingface.co/datasets/rajpurkarlab/ReXGroundingCT. |
| 10 | TexTailor: Customized Text-aligned Texturing via Effective Resampling | 2025-06-12 | 展开We present TexTailor, a novel method for generating consistent object textures from textual descriptions. Existing text-to-texture synthesis approaches utilize depth-aware diffusion models to progressively generate images and synthesize textures across predefined multiple viewpoints. However, these approaches lead to a gradual shift in texture properties across viewpoints due to (1) insufficient integration of previously synthesized textures at each viewpoint during the diffusion process and (2) the autoregressive nature of the texture synthesis process. Moreover, the predefined selection of camera positions, which does not account for the object's geometry, limits the effective use of texture information synthesized from different viewpoints, ultimately degrading overall texture consistency. In TexTailor, we address these issues by (1) applying a resampling scheme that repeatedly integrates information from previously synthesized textures within the diffusion process, and (2) fine-tuning a depth-aware diffusion model on these resampled textures. During this process, we observed that using only a few training images restricts the model's original ability to generate high-fidelity images aligned with the conditioning, and therefore propose an performance preservation loss to mitigate this issue. Additionally, we improve the synthesis of view-consistent textures by adaptively adjusting camera positions based on the object's geometry. Experiments on a subset of the Objaverse dataset and the ShapeNet car dataset demonstrate that TexTailor outperforms state-of-the-art methods in synthesizing view-consistent textures. The source code for TexTailor is available at https://github.com/Adios42/Textailor |
| 11 | CzechLynx: A Dataset for Individual Identification and Pose Estimation of the Eurasian Lynx | 2025-06-05 | 展开We introduce CzechLynx, the first large-scale, open-access dataset for individual identification, 2D pose estimation, and instance segmentation of the Eurasian lynx (Lynx lynx). CzechLynx includes more than 30k camera trap images annotated with segmentation masks, identity labels, and 20-point skeletons and covers 219 unique individuals across 15 years of systematic monitoring in two geographically distinct regions: Southwest Bohemia and the Western Carpathians. To increase the data variability, we create a complementary synthetic set with more than 100k photorealistic images generated via a Unity-based pipeline and diffusion-driven text-to-texture modeling, covering diverse environments, poses, and coat-pattern variations. To allow testing generalization across spatial and temporal domains, we define three tailored evaluation protocols/splits: (i) geo-aware, (ii) time-aware open-set, and (iii) time-aware closed-set. This dataset is targeted to be instrumental in benchmarking state-of-the-art models and the development of novel methods for not just individual animal re-identification. |
| 12 | Uni-Instruct: One-step Diffusion Model through Unified Diffusion Divergence Instruction | 2025-05-27 | 展开In this paper, we unify more than 10 existing one-step diffusion distillation approaches, such as Diff-Instruct, DMD, SIM, SiD, |
| 13 | Constructing a 3D Scene from a Single Image | 2025-05-21 | 展开Acquiring detailed 3D scenes typically demands costly equipment, multi-view data, or labor-intensive modeling. Therefore, a lightweight alternative, generating complex 3D scenes from a single top-down image, plays an essential role in real-world applications. While recent 3D generative models have achieved remarkable results at the object level, their extension to full-scene generation often leads to inconsistent geometry, layout hallucinations, and low-quality meshes. In this work, we introduce SceneFuse-3D, a training-free framework designed to synthesize coherent 3D scenes from a single top-down view. Our method is grounded in two principles: region-based generation to improve image-to-3D alignment and resolution, and spatial-aware 3D inpainting to ensure global scene coherence and high-quality geometry generation. Specifically, we decompose the input image into overlapping regions and generate each using a pretrained 3D object generator, followed by a masked rectified flow inpainting process that fills in missing geometry while maintaining structural continuity. This modular design allows us to overcome resolution bottlenecks and preserve spatial structure without requiring 3D supervision or fine-tuning. Extensive experiments across diverse scenes show that SceneFuse-3D outperforms state-of-the-art baselines, including Trellis, Hunyuan3D-2, TripoSG, and LGM, in terms of geometry quality, spatial coherence, and texture fidelity. Our results demonstrate that high-quality coherent 3D scene-level asset generation is achievable from a single top-down image using a principled, training-free pipeline. |
| 14 | CasTex: Cascaded Text-to-Texture Synthesis via Explicit Texture Maps and Physically-Based Shading | 2025-04-09 | 展开This work investigates text-to-texture synthesis using diffusion models to generate physically-based texture maps. We aim to achieve realistic model appearances under varying lighting conditions. A prominent solution for the task is score distillation sampling. It allows recovering a complex texture using gradient guidance given a differentiable rasterization and shading pipeline. However, in practice, the aforementioned solution in conjunction with the widespread latent diffusion models produces severe visual artifacts and requires additional regularization such as implicit texture parameterization. As a more direct alternative, we propose an approach using cascaded diffusion models for texture synthesis (CasTex). In our setup, score distillation sampling yields high-quality textures out-of-the box. In particular, we were able to omit implicit texture parameterization in favor of an explicit parameterization to improve the procedure. In the experiments, we show that our approach significantly outperforms state-of-the-art optimization-based solutions on public texture synthesis benchmarks. |
| 15 | Uncertainty-Aware Diffusion Guided Refinement of 3D Scenes | 2025-03-19 | 展开Reconstructing 3D scenes from a single image is a fundamentally ill-posed task due to the severely under-constrained nature of the problem. Consequently, when the scene is rendered from novel camera views, existing single image to 3D reconstruction methods render incoherent and blurry views. This problem is exacerbated when the unseen regions are far away from the input camera. In this work, we address these inherent limitations in existing single image-to-3D scene feedforward networks. To alleviate the poor performance due to insufficient information beyond the input image's view, we leverage a strong generative prior in the form of a pre-trained latent video diffusion model, for iterative refinement of a coarse scene represented by optimizable Gaussian parameters. To ensure that the style and texture of the generated images align with that of the input image, we incorporate on-the-fly Fourier-style transfer between the generated images and the input image. Additionally, we design a semantic uncertainty quantification module that calculates the per-pixel entropy and yields uncertainty maps used to guide the refinement process from the most confident pixels while discarding the remaining highly uncertain ones. We conduct extensive experiments on real-world scene datasets, including in-domain RealEstate-10K and out-of-domain KITTI-v2, showing that our approach can provide more realistic and high-fidelity novel view synthesis results compared to existing state-of-the-art methods. |
| 16 | ProcTex: Consistent and Interactive Text-to-texture Synthesis for Part-based Procedural Models | 2025-01-28 | 展开Recent advances in generative modeling have driven significant progress in text-guided texture synthesis. However, current methods focus on synthesizing texture for single static 3D object, and struggle to handle entire families of shapes, such as those produced by procedural programs. Applying existing methods naively to each procedural shape is too slow to support exploring different parameter configurations at interactive rates, and also results in inconsistent textures across the procedural shapes. To this end, we introduce ProcTex, the first text-to-texture system designed for part-based procedural models. ProcTex enables consistent and real-time text-guided texture synthesis for families of shapes, which integrates seamlessly with the interactive design flow of procedural modeling. To ensure consistency, our core approach is to synthesize texture for a template shape from the procedural model, followed by a texture transfer stage to apply the texture to other procedural shapes via solving dense correspondence. To ensure interactiveness, we propose a novel correspondence network and show that dense correspondence can be effectively learned by a neural network for procedural models. We also develop several techniques, including a retexturing pipeline to support structural variation from procedural parameters, and part-level UV texture map generation for local appearance editing. Extensive experiments on a diverse set of procedural models validate ProcTex's ability to produce high-quality, visually consistent textures while supporting interactive applications. |
| 17 | Baking Gaussian Splatting into Diffusion Denoiser for Fast and Scalable Single-stage Image-to-3D Generation and Reconstruction | 2024-11-21 | 展开Existing feedforward image-to-3D methods mainly rely on 2D multi-view diffusion models that cannot guarantee 3D consistency. These methods easily collapse when changing the prompt view direction and mainly handle object-centric cases. In this paper, we propose a novel single-stage 3D diffusion model, DiffusionGS, for object generation and scene reconstruction from a single view. DiffusionGS directly outputs 3D Gaussian point clouds at each timestep to enforce view consistency and allow the model to generate robustly given prompt views of any directions, beyond object-centric inputs. Plus, to improve the capability and generality of DiffusionGS, we scale up 3D training data by developing a scene-object mixed training strategy. Experiments show that DiffusionGS yields improvements of 2.20 dB/23.25 and 1.34 dB/19.16 in PSNR/FID for objects and scenes than the state-of-the-art methods, without depth estimator. Plus, our method enjoys over 5$\times$ faster speed ($\sim$6s on an A100 GPU). Our Project page at https://caiyuanhao1998.github.io/project/DiffusionGS/ shows the video and interactive results. The code and models are publicly available at https://github.com/caiyuanhao1998/Open-DiffusionGS |
| 18 | MVPaint: Synchronized Multi-View Diffusion for Painting Anything 3D | 2024-11-04 | 展开Texturing is a crucial step in the 3D asset production workflow, which enhances the visual appeal and diversity of 3D assets. Despite recent advancements in Text-to-Texture (T2T) generation, existing methods often yield subpar results, primarily due to local discontinuities, inconsistencies across multiple views, and their heavy dependence on UV unwrapping outcomes. To tackle these challenges, we propose a novel generation-refinement 3D texturing framework called MVPaint, which can generate high-resolution, seamless textures while emphasizing multi-view consistency. MVPaint mainly consists of three key modules. 1) Synchronized Multi-view Generation (SMG). Given a 3D mesh model, MVPaint first simultaneously generates multi-view images by employing an SMG model, which leads to coarse texturing results with unpainted parts due to missing observations. 2) Spatial-aware 3D Inpainting (S3I). To ensure complete 3D texturing, we introduce the S3I method, specifically designed to effectively texture previously unobserved areas. 3) UV Refinement (UVR). Furthermore, MVPaint employs a UVR module to improve the texture quality in the UV space, which first performs a UV-space Super-Resolution, followed by a Spatial-aware Seam-Smoothing algorithm for revising spatial texturing discontinuities caused by UV unwrapping. Moreover, we establish two T2T evaluation benchmarks: the Objaverse T2T benchmark and the GSO T2T benchmark, based on selected high-quality 3D meshes from the Objaverse dataset and the entire GSO dataset, respectively. Extensive experimental results demonstrate that MVPaint surpasses existing state-of-the-art methods. Notably, MVPaint could generate high-fidelity textures with minimal Janus issues and highly enhanced cross-view consistency. |
| 19 | 3D Audio-Visual Segmentation | 2024-11-04 | 展开Recognizing the sounding objects in scenes is a longstanding objective in embodied AI, with diverse applications in robotics and AR/VR/MR. To that end, Audio-Visual Segmentation (AVS), taking as condition an audio signal to identify the masks of the target sounding objects in an input image with synchronous camera and microphone sensors, has been recently advanced. However, this paradigm is still insufficient for real-world operation, as the mapping from 2D images to 3D scenes is missing. To address this fundamental limitation, we introduce a novel research problem, 3D Audio-Visual Segmentation, extending the existing AVS to the 3D output space. This problem poses more challenges due to variations in camera extrinsics, audio scattering, occlusions, and diverse acoustics across sounding object categories. To facilitate this research, we create the very first simulation based benchmark, 3DAVS-S34-O7, providing photorealistic 3D scene environments with grounded spatial audio under single-instance and multi-instance settings, across 34 scenes and 7 object categories. This is made possible by re-purposing the Habitat simulator to generate comprehensive annotations of sounding object locations and corresponding 3D masks. Subsequently, we propose a new approach, EchoSegnet, characterized by integrating the ready-to-use knowledge from pretrained 2D audio-visual foundation models synergistically with 3D visual scene representation through spatial audio-aware mask alignment and refinement. Extensive experiments demonstrate that EchoSegnet can effectively segment sounding objects in 3D space on our new benchmark, representing a significant advancement in the field of embodied AI. Project page: https://x-up-lab.github.io/research/3d-audio-visual-segmentation/ |
| 20 | SceneComplete: Open-World 3D Scene Completion in Cluttered Real World Environments for Robot Manipulation | 2024-10-31 | 展开Careful robot manipulation in every-day cluttered environments requires an accurate understanding of the 3D scene, in order to grasp and place objects stably and reliably and to avoid colliding with other objects. In general, we must construct such a 3D interpretation of a complex scene based on limited input, such as a single RGB-D image. We describe SceneComplete, a system for constructing a complete, segmented, 3D model of a scene from a single view. SceneComplete is a novel pipeline for composing general-purpose pretrained perception modules (vision-language, segmentation, image-inpainting, image-to-3D, visual-descriptors and pose-estimation) to obtain highly accurate results. We demonstrate its accuracy and effectiveness with respect to ground-truth models in a large benchmark dataset and show that its accurate whole-object reconstruction enables robust grasp proposal generation, including for a dexterous hand. We release the code and additional results on our website. |
| 21 | 3D-Adapter: Geometry-Consistent Multi-View Diffusion for High-Quality 3D Generation | 2024-10-24 | 展开Multi-view image diffusion models have significantly advanced open-domain 3D object generation. However, most existing models rely on 2D network architectures that lack inherent 3D biases, resulting in compromised geometric consistency. To address this challenge, we introduce 3D-Adapter, a plug-in module designed to infuse 3D geometry awareness into pretrained image diffusion models. Central to our approach is the idea of 3D feedback augmentation: for each denoising step in the sampling loop, 3D-Adapter decodes intermediate multi-view features into a coherent 3D representation, then re-encodes the rendered RGBD views to augment the pretrained base model through feature addition. We study two variants of 3D-Adapter: a fast feed-forward version based on Gaussian splatting and a versatile training-free version utilizing neural fields and meshes. Our extensive experiments demonstrate that 3D-Adapter not only greatly enhances the geometry quality of text-to-multi-view models such as Instant3D and Zero123++, but also enables high-quality 3D generation using the plain text-to-image Stable Diffusion. Furthermore, we showcase the broad application potential of 3D-Adapter by presenting high quality results in text-to-3D, image-to-3D, text-to-texture, and text-to-avatar tasks. |
| 22 | Jointly Generating Multi-view Consistent PBR Textures using Collaborative Control | 2024-10-09 | 展开Multi-view consistency remains a challenge for image diffusion models. Even within the Text-to-Texture problem, where perfect geometric correspondences are known a priori, many methods fail to yield aligned predictions across views, necessitating non-trivial fusion methods to incorporate the results onto the original mesh. We explore this issue for a Collaborative Control workflow specifically in PBR Text-to-Texture. Collaborative Control directly models PBR image probability distributions, including normal bump maps; to our knowledge, the only diffusion model to directly output full PBR stacks. We discuss the design decisions involved in making this model multi-view consistent, and demonstrate the effectiveness of our approach in ablation studies, as well as practical applications. |
| 23 | FlashTex: Fast Relightable Mesh Texturing with LightControlNet | 2024-02-20 | 展开Manually creating textures for 3D meshes is time-consuming, even for expert visual content creators. We propose a fast approach for automatically texturing an input 3D mesh based on a user-provided text prompt. Importantly, our approach disentangles lighting from surface material/reflectance in the resulting texture so that the mesh can be properly relit and rendered in any lighting environment. We introduce LightControlNet, a new text-to-image model based on the ControlNet architecture, which allows the specification of the desired lighting as a conditioning image to the model. Our text-to-texture pipeline then constructs the texture in two stages. The first stage produces a sparse set of visually consistent reference views of the mesh using LightControlNet. The second stage applies a texture optimization based on Score Distillation Sampling (SDS) that works with LightControlNet to increase the texture quality while disentangling surface material from lighting. Our algorithm is significantly faster than previous text-to-texture methods, while producing high-quality and relightable textures. |
| 序号 | 标题 | 日期 | 摘要 |
|---|---|---|---|
| 1 | Dissect-and-Restore: AI-based Code Verification with Transient Refactoring | 2025-10-29 | 展开Formal verification is increasingly recognized as a critical foundation for building reliable software systems. However, the need for specialized expertise to write precise specifications, navigate complex proof obligations, and learn annotations often makes verification an order of magnitude more expensive than implementation. While modern AI systems can recognize patterns in mathematical proofs and interpret natural language, effectively integrating them into the formal verification process remains an open challenge. We present Prometheus, a novel AI-assisted system that facilitates automated code verification with current AI capabilities in conjunction with modular software engineering principles (e.g., modular refactoring). Our approach begins by decomposing complex program logic, such as nested loops, into smaller, verifiable components. Once verified, these components are recomposed to construct a proof of the original program. This decomposition-recomposition workflow is non-trivial. Prometheus addresses this by guiding the proof search through structured decomposition of complex lemmas into smaller, verifiable sub-lemmas. When automated tools are insufficient, users can provide lightweight natural language guidance to steer the proof process effectively. Our evaluation demonstrates that transiently applying modular restructuring to the code substantially improves the AI's effectiveness in verifying individual components. This approach successfully verifies 86% of tasks in our curated dataset, compared to 68% for the baseline. Gains are more pronounced with increasing specification complexity, improving from 30% to 69%, and when integrating proof outlines for complex programs, from 25% to 87%. |
| 2 | Adaptive Proof Refinement with LLM-Guided Strategy Selection | 2025-10-29 | 展开Formal verification via theorem proving enables the expressive specification and rigorous proof of software correctness, but it is difficult to scale due to the significant manual effort and expertise required. While Large Language Models (LLMs) show potential in proof generation, they frequently produce incorrect proofs on the first attempt and require additional strategies for iterative refinement. However, existing approaches employ fixed refinement strategies and cannot dynamically choose an effective strategy based on the particular issues in a generated proof, which limits their performance. To overcome this limitation, we introduce Adapt, a novel proof refinement framework that leverages an LLM-guided decision-maker to dynamically select a suitable refinement strategy according to the state of the proof assistant and available context of an incorrect proof. We evaluate Adapt on two benchmarks against four existing methods and find that it significantly outperforms the best baseline on both by proving 16.63% and 18.58% more theorems, respectively. Furthermore, we demonstrate Adapt's generalizability by evaluating it across five different LLMs. We also conduct ablation studies to measure the contribution of each component and compare the trade-offs of alternative decision-maker designs. |
| 3 | VeriStruct: AI-assisted Automated Verification of Data-Structure Modules in Verus | 2025-10-28 | 展开We introduce VeriStruct, a novel framework that extends AI-assisted automated verification from single functions to more complex data structure modules in Verus. VeriStruct employs a planner module to orchestrate the systematic generation of abstractions, type invariants, specifications, and proof code. To address the challenge that LLMs often misunderstand Verus' annotation syntax and verification-specific semantics, VeriStruct embeds syntax guidance within prompts and includes a repair stage to automatically correct annotation errors. In an evaluation on eleven Rust data structure modules, VeriStruct succeeds on ten of the eleven, successfully verifying 128 out of 129 functions (99.2%) in total. These results represent an important step toward the goal of automatic AI-assisted formal verification. |
| 4 | A Hamilton-Jacobi Reachability Framework with Soft Constraints for Safety-Critical Systems | 2025-10-28 | 展开Traditional reachability methods provide formal guarantees of safety under bounded disturbances. However, they strictly enforce state constraints as inviolable, which can result in overly conservative or infeasible solutions in complex operational scenarios. Many constraints encountered in practice, such as bounds on battery state of charge in electric vehicles, recommended speed envelopes, and comfort constraints in passenger-carrying vehicles, are inherently soft. Soft constraints allow temporary violations within predefined safety margins to accommodate uncertainty and competing operational demands, albeit at a cost such as increased wear or higher operational expenses. This paper introduces a novel soft-constrained reachability framework that extends Hamilton-Jacobi reachability analysis for the formal verification of safety-critical systems subject to both hard and soft constraints. Specifically, the framework characterizes a subset of the state space, referred to as the soft-constrained reach-avoid set, from which the system is guaranteed to reach a desired set safely, under worst-case disturbances, while ensuring that cumulative soft-constraint violations remain within a user-specified budget. The framework comprises two principal components: (i) an augmented-state model with an auxiliary budget state that tracks soft-constraint violations, and (ii) a regularization-based approximation of the discontinuous Hamilton-Jacobi value function associated with the reach-avoid differential game studied herein. The effectiveness of the proposed framework is demonstrated through numerical examples involving the landing of a simple point-mass model and a fixed-wing aircraft executing an emergency descent, both under wind disturbances. The simulation results validate the framework's ability to simultaneously manage both hard and soft constraints in safety-critical settings |
| 5 | Formal Verification of a Token Sale Launchpad: A Compositional Approach in Dafny | 2025-10-27 | 展开The proliferation of decentralized financial (DeFi) systems and smart contracts has underscored the critical need for software correctness. Bugs in such systems can lead to catastrophic financial losses. Formal verification offers a path to achieving mathematical certainty about software behavior. This paper presents the formal verification of the core logic for a token sale launchpad, implemented and proven correct using the Dafny programming language and verification system. We detail a compositional, bottom-up verification strategy, beginning with the proof of fundamental non-linear integer arithmetic properties, and building upon them to verify complex business logic, including asset conversion, time-based discounts, and capped-sale refund mechanics. The principal contributions are the formal proofs of critical safety and lifecycle properties. Most notably, we prove that refunds in a capped sale can never exceed the user's original deposit amount, and that the precision loss in round-trip financial calculations is strictly bounded. Furthermore, we verify the complete lifecycle logic, including user withdrawals under various sale mechanics and the correctness of post-sale token allocation, vesting, and claiming. This work serves as a comprehensive case study in applying rigorous verification techniques to build high-assurance financial software. |
| 6 | A Theorem-Proving-Based Evaluation of Neural Semantic Parsing | 2025-10-13 | 展开Graph-matching metrics such as Smatch are the de facto standard for evaluating neural semantic parsers, yet they capture surface overlap rather than logical equivalence. We reassess evaluation by pairing graph-matching with automated theorem proving. We compare two approaches to building parsers: supervised fine-tuning (T5-Small/Base) and few-shot in-context learning (GPT-4o/4.1/5), under normalized and unnormalized targets. We evaluate outputs using graph-matching, bidirectional entailment between source and target formulas with a first-order logic theorem prover, and well-formedness. Across settings, we find that models performing well on graph-matching often fail to produce logically equivalent formulas. Normalization reduces incidental target variability, improves well-formedness, and strengthens logical adequacy. Error analysis shows performance degrades with increasing formula complexity and with coordination, prepositional phrases, and passive voice; the dominant failures involve variable binding and indexing, and predicate naming. These findings highlight limits of graph-based metrics for reasoning-oriented applications and motivate logic-sensitive evaluation and training objectives together with simplified, normalized target representations. All code and data for our experiments are publicly available. |
| 7 | Proof Strategy Extraction from LLMs for Enhancing Symbolic Provers | 2025-10-11 | 展开One important approach to software verification is interactive theorem proving. However, writing formal proofs often requires substantial human effort, making proof automation highly important. Traditionally, proof automation has relied on symbolic provers. Recently, large language models (LLMs) have demonstrated strong capabilities in theorem proving, complementing symbolic provers. Nonetheless, prompting LLMs can be expensive and may pose security risks for confidential codebases. As a result, purely symbolic approaches remain important even in the LLM era, as they are cost-effective, secure, and complement the strengths of LLMs. Motivated by these considerations, we ask a new research question: can we extract the internal strategies of LLMs to enhance the capabilities of symbolic provers? As an initial attempt to answer this question, we propose Strat2Rocq, which extracts proof strategies from LLMs and formalizes them as lemmas in Rocq. These lemmas are accessible to symbolic provers such as CoqHammer. With the addition of these LLM-extracted lemmas, CoqHammer is able to prove more theorems. The knowledge extraction process involves analyzing the proof trajectories of LLMs on a training set of proved theorems. For each theorem, we prompt the LLM to generate a natural language proof, then ask it to summarize this proof into formalized lemmas with proofs. We also employ a standard agentic approach to mitigate errors during formalization. Our evaluation demonstrates that, on open-source Rocq projects for software verification, Strat2Rocq enhances the success rate of CoqHammer by 13.41%. |
| 8 | L-Mosaics and Bounded Join-Semilattices in Isabelle/HOL | 2025-09-24 | 展开We present a complete formalization in Isabelle/HOL of the object part of an equivalence between L-mosaics and bounded join-semilattices, employing an AI-assisted methodology that integrates large language models as reasoning assistants throughout the proof development process. The equivalence was originally established by Cangiotti, Linzi, and Talotti in their study of hypercompositional structures related to orthomodular lattices and quantum logic. Our formalization rigorously verifies the main theoretical result and demonstrates the mutual inverse property of the transformations establishing this equivalence. The development showcases both the mathematical depth of multivalued algebraic operations and the potential for AI-enhanced interactive theorem proving in tackling complex formalization projects. |
| 9 | An ACL2s Interface to Z3 | 2025-07-25 | 展开We present Lisp-Z3, an extension to the ACL2s systems programming framework (ASPF) that supports the use of the Z3 satisfiability modulo theories (SMT) solver. Lisp-Z3 allows one to develop tools written using the full feature set of Common Lisp that can use both ACL2/s (either ACL2 or ACL2s) and Z3 as services, combining the power of SMT and interactive theorem proving. Lisp-Z3 is usable by anyone who would like to interact with Z3 from Common Lisp, as it does not depend on the availability of ACL2/s. We discuss the use of Lisp-Z3 in three applications. The first is a Sudoku solver. The second is SeqSolve, a string solver which solved a larger number of benchmark problems more quickly than any other existing solver at the time of its publishing. Finally, Lisp-Z3 was also used in the context of hardware-in-the-loop fuzzing of wireless routers, where low latency was an important goal. The latter two applications leveraged the ability of Lisp-Z3 to integrate Z3 with ACL2s code. We have further plans to use Lisp-Z3 inside of ACL2s to provide more powerful automated support for dependent types, and in particular more efficient generation of counterexamples to properties involving dependent types. This paper describes the usage and implementation of Lisp-Z3, as well as an evaluation of its use in the aforementioned applications. |
| 10 | Quantifying Bounded Rationality: Formal Verification of Simon's Satisficing Through Flexible Stochastic Dominance | 2025-07-02 | 展开This paper introduces Flexible First-Order Stochastic Dominance (FFSD), a mathematically rigorous framework that formalizes Herbert Simon's concept of bounded rationality using the Lean 4 theorem prover. We develop machine-verified proofs demonstrating that FFSD bridges classical expected utility theory with Simon's satisficing behavior through parameterized tolerance thresholds. Our approach yields several key results: (1) a critical threshold |
| 11 | Prover Agent: An Agent-Based Framework for Formal Mathematical Proofs | 2025-06-24 | 展开We present Prover Agent, a novel AI agent for automated theorem proving that integrates large language models (LLMs) with a formal proof assistant, Lean. Prover Agent coordinates an informal reasoning LLM, a formal prover model, and feedback from Lean while also generating auxiliary lemmas. These auxiliary lemmas are not limited to subgoals in the formal proof but can also include special cases or potentially useful facts derived from the assumptions, which help in discovering a viable proof strategy. It achieves an 88.1% success rate on the MiniF2F benchmark, establishing a new state-of-the-art among methods using small language models (SLMs) with a much lower sample budget than previous approaches. We also present theoretical analyses and case studies that illustrate how these generated lemmas contribute to solving challenging problems. Our code is publicly available at: https://github.com/kAIto47802/Prover-Agent. |
| 12 | Ineq-Comp: Benchmarking Human-Intuitive Compositional Reasoning in Automated Theorem Proving on Inequalities | 2025-05-19 | 展开LLM-based formal proof assistants (e.g., in Lean) hold great promise for automating mathematical discovery. But beyond syntactic correctness, do these systems truly understand mathematical structure as humans do? We investigate this question in context of mathematical inequalities -- specifically the prover's ability to recognize that the given problem simplifies by applying a known inequality such as AM/GM. Specifically, we are interested in their ability to do this in a compositional setting where multiple inequalities must be applied as part of a solution. We introduce Ineq-Comp, a benchmark built from elementary inequalities through systematic transformations, including variable duplication, algebraic rewriting, and multi-step composition. Although these problems remain easy for humans, we find that most provers -- including Goedel, STP, and Kimina-7B -- struggle significantly. DeepSeek-Prover-V2-7B shows relative robustness, but still suffers a 20% performance drop (pass@32). Even for DeepSeek-Prover-V2-671B model, the gap between compositional variants and seed problems exists, implying that simply scaling up the model size alone does not fully solve the compositional weakness. Strikingly, performance remains poor for all models even when formal proofs of the constituent parts are provided in context, revealing that the source of weakness is indeed in compositional reasoning. Our results expose a persisting gap between the generalization behavior of current AI provers and human mathematical intuition. All data and evaluation code can be found at https://github.com/haoyuzhao123/LeanIneqComp. |
| 13 | APOLLO: Automated LLM and Lean Collaboration for Advanced Formal Reasoning | 2025-05-09 | 展开Formal reasoning and automated theorem proving constitute a challenging subfield of machine learning, in which machines are tasked with proving mathematical theorems using formal languages like Lean. A formal verification system can check whether a formal proof is correct or not almost instantaneously, but generating a completely correct formal proof with large language models (LLMs) remains a formidable task. The usual approach in the literature is to prompt the LLM many times (up to several thousands) until one of the generated proofs passes the verification system. In this work, we present APOLLO (Automated PrOof repair viaLLM and Lean cOllaboration), a modular, model-agnostic agentic framework that combines the strengths of the Lean compiler with an LLM's reasoning abilities to achieve better proof-generation results at a low token and sampling budgets. Apollo directs a fully automated process in which the LLM generates proofs for theorems, a set of agents analyze the proofs, fix the syntax errors, identify the mistakes in the proofs using Lean, isolate failing sub-lemmas, utilize automated solvers, and invoke an LLM on each remaining goal with a low top-K budget. The repaired sub-proofs are recombined and reverified, iterating up to a user-controlled maximum number of attempts. On the miniF2F benchmark, we establish a new state-of-the-art accuracy of 84.9% among sub 8B-parameter models (as of August 2025) while keeping the sampling budget below one hundred. Moreover, Apollo raises the state-of-the-art accuracy for Goedel-Prover-SFT to 65.6% while cutting sample complexity from 25,600 to a few hundred. General-purpose models (o3-mini, o4-mini) jump from 3-7% to over 40% accuracy. Our results demonstrate that targeted, compiler-guided repair of LLM outputs yields dramatic gains in both efficiency and correctness, suggesting a general paradigm for scalable automated theorem proving. |
| 14 | Efficient Formal Verification of Quantum Error Correcting Programs | 2025-04-10 | 展开Quantum error correction (QEC) is fundamental for suppressing noise in quantum hardware and enabling fault-tolerant quantum computation. In this paper, we propose an efficient verification framework for QEC programs. We define an assertion logic and a program logic specifically crafted for QEC programs and establish a sound proof system. We then develop an efficient method for handling verification conditions (VCs) of QEC programs: for Pauli errors, the VCs are reduced to classical assertions that can be solved by SMT solvers, and for non-Pauli errors, we provide a heuristic algorithm. We formalize the proposed program logic in Coq proof assistant, making it a verified QEC verifier. Additionally, we implement an automated QEC verifier, Veri-QEC, for verifying various fault-tolerant scenarios. We demonstrate the efficiency and broad functionality of the framework by performing different verification tasks across various scenarios. Finally, we present a benchmark of 14 verified stabilizer codes. |
| 15 | Automated Discovery of Tactic Libraries for Interactive Theorem Proving | 2025-03-31 | 展开Enabling more concise and modular proofs is essential for advancing formal reasoning using interactive theorem provers (ITPs). Since many ITPs, such as Rocq and Lean, use tactic-style proofs, learning higher-level custom tactics is crucial for proof modularity and automation. This paper presents a novel approach to tactic discovery, which leverages Tactic Dependence Graphs (TDGs) to identify reusable proof strategies across multiple proofs. TDGs capture logical dependencies between tactic applications while abstracting away irrelevant syntactic details, allowing for both the discovery of new tactics and the refactoring of existing proofs into more modular forms. We have implemented this technique in a tool called TacMiner and compare it against an anti-unification-based approach Peano to tactic discovery. Our evaluation demonstrates that TacMiner can learn 3x as many tactics as Peano and reduces the size of proofs by 26% across all benchmarks. Furthermore, our evaluation demonstrates the benefits of learning custom tactics for proof automation, allowing a state-of-the-art proof automation tool to achieve a relative increase of 172% in terms of success rate. |
| 16 | A Natural Homomorphism between the Model Constructions of the Completeness and Compactness Theorems | 2025-03-19 | 展开We establish a categorical framework relating two canonical model constructions in first-order logic: the Henkin construction and compactness-based constructions via ultraproducts or saturation. By introducing a globally fixed set of Henkin witness constants, we define two functors from the category of consistent first-order theories to the category of models with elementary embeddings. The first functor assigns to each theory its Henkin term model in an expanded language, while the second assigns the Skolem closure generated by the witness constants within a fixed ultraproduct or saturated model. We construct a natural transformation such that each component is an isomorphism between the corresponding models. The key insight is that both constructions utilize the same global Henkin expansion scheme, ensuring functoriality and allowing the canonical interpretation map to be surjective onto the Skolem closure. We clarify that without the Skolem closure restriction, the map would only be an elementary embedding rather than an isomorphism, as an arbitrary saturated model may contain non-standard elements outside the range of the term model. For special classes of theories, including aleph-zero-categorical theories and atomic complete theories, the construction simplifies due to uniqueness properties of their countable models. We also correct previous claims regarding rigidity of natural transformations, noting that uniform permutations of Henkin constants yield non-trivial natural automorphisms. This work provides structural insight into the relationship between syntactic proof-theoretic and semantic model-theoretic approaches to first-order logic, with potential applications in automated theorem proving and formal verification. |
| 17 | LeanProgress: Guiding Search for Neural Theorem Proving via Proof Progress Prediction | 2025-02-25 | 展开Mathematical reasoning remains a significant challenge for Large Language Models (LLMs) due to hallucinations. When combined with formal proof assistants like Lean, these hallucinations can be eliminated through rigorous verification, making theorem proving reliable. However, even with formal verification, LLMs still struggle with long proofs and complex mathematical formalizations. While Lean with LLMs offers valuable assistance with retrieving lemmas, generating tactics, or even complete proofs, it lacks a crucial capability: providing a sense of proof progress. This limitation particularly impacts the overall development efficiency in large formalization projects. We introduce LeanProgress, a method that predicts the progress in the proof. Training and evaluating our models made on a large corpus of Lean proofs from Lean Workbook Plus and Mathlib4 and how many steps remain to complete it, we employ data preprocessing and balancing techniques to handle the skewed distribution of proof lengths. Our experiments show that LeanProgress achieves an overall prediction accuracy of 75.1% in predicting the amount of progress and, hence, the remaining number of steps. When integrated into a best-first search framework using Reprover, our method shows a 3.8% improvement on Mathlib4 compared to baseline performances of 41.2%, particularly for longer proofs. These results demonstrate how proof progress prediction can enhance both automated and interactive theorem proving, enabling users to make more informed decisions about proof strategies. |
| 18 | Steering LLMs for Formal Theorem Proving | 2025-02-21 | 展开Recent advances in automated theorem proving use Large Language Models (LLMs) to translate informal mathematical statements into formal proofs. However, informal cues are often ambiguous or lack strict logical structure, making it hard for models to interpret them precisely. While existing methods achieve strong performance, little is known about how LLMs internally represent informal cues, or how these influence proof generation. To address this, we explore \textit{activation steering}, an inference-time intervention that identifies linear directions in residual activations associated with informal reasoning traces and adjusts them to improve proof construction without fine-tuning. This mechanism also yields interpretable information about how reasoning is internally encoded in the activation space of LLMs. We test our method for generating formal proofs from already-formalized theorems. Our contributions are twofold: (1) a novel activation-based intervention for guiding proof synthesis in LLMs; and (2) demonstration that this intervention improves performance under two decoding strategies (sampling and best-first search) without any further training. |
| 19 | InternLM2.5-StepProver: Advancing Automated Theorem Proving via Critic-Guided Search | 2024-10-21 | 展开Large Language Models (LLMs) have emerged as powerful tools in mathematical theorem proving, particularly when utilizing formal languages such as LEAN. A prevalent proof method involves the LLM prover iteratively constructing the proof tactic by tactic, typically following a best-first search scheme. However, this method often ignores the critical preference information inside the existing tactic trajectories, hindering the search for deeper proofs. We propose an intuitive yet effective method, which utilizes a critic model to capture the preference information and to guide the search of the prover model at runtime. Given the prover-critic framework, a large-scale expert iteration with more than 20,000 CPU days is then applied to further fine-tune the prover and the critic. The trained InternLM2.5-StepProver critic significantly boosts the performance of the prover model (59.4% to 65.9%). We also analyze the impact of the critic on various aspects of the theorem proving process during expert iteration, providing insights into its effectiveness. We open-source our models and searched proofs at https://github.com/InternLM/InternLM-Math and https://huggingface.co/datasets/internlm/Lean-Workbook. |
| 20 | Galapagos: Automated N-Version Programming with LLMs | 2024-08-18 | 展开N-Version Programming is a well-known methodology for developing fault-tolerant systems. It achieves fault detection and correction at runtime by adding diverse redundancy into programs, minimizing fault mode overlap between redundant program variants. In this work, we propose the automated generation of program variants using large language models. We design, develop and evaluate Gal'apagos: a tool for generating program variants using LLMs, validating their correctness and equivalence, and using them to assemble N-Version binaries. We evaluate Gal'apagos by creating N-Version components of real-world C code. Our original results show that Gal'apagos can produce program variants that are proven to be functionally equivalent, even when the variants are written in a different programming language. Our systematic diversity measurement indicates that functionally equivalent variants produced by Gal'apagos, are statically different after compilation, and present diverging internal behavior at runtime. We demonstrate that the variants produced by Gal'apagos can protect C code against real miscompilation bugs which affect the Clang compiler. Overall, our paper shows that producing N-Version software can be drastically automated by advanced usage of practical formal verification and generative language models. |
| 21 | A Certified Proof Checker for Deep Neural Network Verification in Imandra | 2024-05-17 | 展开Recent advances in the verification of deep neural networks (DNNs) have opened the way for a broader usage of DNN verification technology in many application areas, including safety-critical ones. However, DNN verifiers are themselves complex programs that have been shown to be susceptible to errors and numerical imprecision; this, in turn, has raised the question of trust in DNN verifiers. One prominent attempt to address this issue is enhancing DNN verifiers with the capability of producing certificates of their results that are subject to independent algorithmic checking. While formulations of Marabou certificate checking already exist on top of the state-of-the-art DNN verifier Marabou, they are implemented in C++, and that code itself raises the question of trust (e.g., in the precision of floating point calculations or guarantees for implementation soundness). Here, we present an alternative implementation of the Marabou certificate checking in Imandra -- an industrial functional programming language and an interactive theorem prover (ITP) -- that allows us to obtain full proof of certificate correctness. The significance of the result is two-fold. Firstly, it gives stronger independent guarantees for Marabou proofs. Secondly, it opens the way for the wider adoption of DNN verifiers in interactive theorem proving in the same way as many ITPs already incorporate SMT solvers. |
| 22 | VerifIoU -- Robustness of Object Detection to Perturbations | 2024-01-30 | 展开We introduce a novel Interval Bound Propagation (IBP) approach for the formal verification of object detection models, specifically targeting the Intersection over Union (IoU) metric. The approach has been implemented in an open source code, named IBP IoU, compatible with popular abstract interpretation based verification tools. The resulting verifier is evaluated on landing approach runway detection and handwritten digit recognition case studies. Comparisons against a baseline (Vanilla IBP IoU) highlight the superior performance of IBP IoU in ensuring accuracy and stability, contributing to more secure and robust machine learning applications. |
感谢原始项目 @zezhishao/DailyArXiv 提供的灵感。