RP2040 has two ARM Cortex-M0+ cores, and the second core normally remains dormant.
pico-debug runs on one core in a RP2040 and provides a USB CMSIS-DAP interface to debug the other core. No hardware is added; it is as if there were a virtual debug pod built-in.
Boot the RP2040 with the BOOTSEL button pressed, copy over pico-debug.uf2, and it immediately reboots as a CMSIS-DAP adapter. pico-debug loads as a RAM only .uf2 image, meaning that it is never written to flash and doesn't replace existing user code.
To cater to different user situations, there are two versions of pico-debug: MAXRAM and GIMMECACHE
Most users will prefer to use the GIMMECACHE version.
With pico-debug-maxram, all 264kBytes of SRAM on the RP2040 is available for running user code; pico-debug shoehorns itself entirely into the 16kBytes of XIP_SRAM (aka flash cache).
With pico-debug-gimmecache, 248kBytes (94% of total) of SRAM is available for running user code; pico-debug gives plenty of elbow room by occupying only 6% near the very top of SRAM, and unlike MAXRAM, leaves the flash cache operational.
If viewing this on github, pre-built binaries are available for download on the right under "Releases".
Please read howto/README.md for instructions on how to start using pico-debug.
The executive summary is:
pico-debug uses the USB port to provide debugging to the user, so the user's app can't be simultaneously using the USB port! :)
The specifics are:
- MAXRAM only: the flash cache cannot be used by the user code, as pico-debug is using this memory
- GIMMECACHE only: SRAM 0x2003C000 to 0x2003FFFF must not be used by user code
- user code cannot reconfigure the PLL_USB, as the USB peripheral needs this
- the USB peripheral is used to provide the debugger, so the user code cannot use it as well
TinyUSB and code specific to pico-debug is licensed under the MIT license.
ARM's CMSIS_5 code is licensed under the Apache 2.0 license.