Source codes for our COLING 2020 paper: Knowledge Graph Embedding with Atrous Convolution and Residual Learning.
- Compatible with PyTorch 1.0 and Python 3.x.
- Dependencies can be installed using requirements.txt.
- We use FB15k-237,FB15k,DB100K,Kinship,WN18RR,WN18 datasets for evaluation, and they are included in the repo.
- Install all the requirements from
requirements.txt.
- Execute
sh preprocess.sh
for extracting the datasets and setting up the environment. - The command for training arce and its prompt are below:
data
indicates the dataset used for training the model.gpu
is the GPU used for training the model.name
is the provided name of the run which can be later used for restoring the model.- Execute
python acre.py --help
for listing all the available options.#Serial fb15k237 python -u acre.py --data FB15k-237 --batch 128 \ --hid_drop 0.5 --feat_drop 0.2 --lr 0.001 --inp_drop 0.3 --gpu 0 --name fb15k_237_s --way s --train_strategy one_to_x #Serial fb15k python -u acre.py --data FB15k --batch 256 \ --hid_drop 0.2 --feat_drop 0.2 --lr 0.001 --inp_drop 0.2 --gpu 0 --name fb15k_s --way s --train_strategy one_to_n #Serial kinship python -u acre.py --data kinship --batch 128 \ --hid_drop 0.5 --feat_drop 0.5 --lr 0.001 --inp_drop 0.2 --gpu 0 --name kinship_s --way s --train_strategy one_to_n #Serial WN18RR python -u acre.py --data WN18RR --batch 256 \ --hid_drop 0.5 --feat_drop 0.1 --lr 0.00125 --inp_drop 0.2 --gpu 0 --name wn18rr_s --way s --train_strategy one_to_n #Serial WN18 python -u acre.py --data WN18 --batch 256 \ --hid_drop 0.3 --feat_drop 0.3 --lr 0.0012 --inp_drop 0.2 --gpu 0 --name wn18_s --way s --train_strategy one_to_n #Serial DB100K python -u acre.py --data DB100K --batch 256 \ --hid_drop 0.3 --feat_drop 0.2 --lr 0.0012 --inp_drop 0.2 --gpu 0 --name db100k_s --way s --train_strategy one_to_x #Parallel fb15k237 python -u acre.py --data FB15k-237 --batch 128 \ --hid_drop 0.5 --feat_drop 0.2 --lr 0.001 --inp_drop 0.3 --gpu 0 --name --fb15k_237_p --way p --train_strategy one_to_x #Parallel fb15k python -u acre.py --data FB15k --batch 256 \ --hid_drop 0.2 --feat_drop 0.2 --lr 0.001 --inp_drop 0.2 --gpu 0 --name --fb15k_p --way p --train_strategy one_to_n #Parallel kinship python -u acre.py --data kinship --batch 128 \ --hid_drop 0.5 --feat_drop 0.2 --lr 0.0001 --inp_drop 0.3 --gpu 0 --name --kinship_p --way p --train_strategy one_to_n #Parallel WN18RR python -u acre.py --data WN18RR --batch 256 \ --hid_drop 0.5 --feat_drop 0.1 --lr 0.00125 --inp_drop 0.3 --gpu 0 --name --wn18rr_p --way p --train_strategy one_to_x #Parallel WN18 python -u acre.py --data WN18 --batch 256 \ --hid_drop 0.3 --feat_drop 0.3 --lr 0.0012 --inp_drop 0.2 --gpu 0 --name --wn18_p --way p --train_strategy one_to_x #Parallel DB100K python -u acre.py --data DB100K --batch 256 \ --hid_drop 0.3 --feat_drop 0.2 --lr 0.0012 --inp_drop 0.2 --gpu 0 --name --db100k_p --way p --train_strategy one_to_x
Parts of our codes come from InteractE. Thanks for their contributions.