This repository provides a PyTorch implementation of the paper MS-TCN: Multi-Stage Temporal Convolutional Network for Action Segmentation.
Tested with:
- PyTorch 0.4.1
- Python 2.7.12
- Download the data folder, which contains the features and the ground truth labels. (~30GB)
- Extract it so that you have the
data
folder in the same directory asmain.py
. - To train the model run
python main.py --action=train --dataset=DS --split=SP
whereDS
isbreakfast
,50salads
orgtea
, andSP
is the split number (1-5) for 50salads and (1-4) for the other datasets.
Run python main.py --action=predict --dataset=DS --split=SP
.
Run python eval.py --dataset=DS --split=SP
.
If you use the code, please cite
Y. Abu Farha and J. Gall.
MS-TCN: Multi-Stage Temporal Convolutional Network for Action Segmentation.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019