Pytorch-lightning implementation of the paper GCDT: A Global Context Enhanced Deep Transition Architecture for Sequence Labeling
Rewards for grids
conda create --name train_ner python=3.8
conda activate train_ner
pip install -r requirements.txt
conda create --name infer_ner python=3.8
conda activate infer_ner
pip install -r app/requirements.txt
This stores model checkpoints at lightning_logs/backup after every epoch
conda activate train_ner
python train.py --base_dir data/conll03 \
--config_file configs/config.json \
--epochs 1000
Uses the files in lightning_logs/backup to output metrics as a csv file at data/conll03/testa_beam8.csv.
conda activate train_ner
python test.py
conda activate infer_ner
python app/main.py