a global optimization example + landmark distances performed with ITK and ANTs
Global optimization. You may need to change the parameters for your own application.
See the code here which uses ITK multi-start optimization
antsAffineInitializer 2 chicken-4.jpg chicken-3.jpg chicken3to4.mat 10 0.3 0 10
Now apply the results to warp the images and the labels.
antsApplyTransforms -d 2 -i chicken-3.jpg -o test.nii.gz -r chicken-4.jpg -t chicken3to4.mat
antsApplyTransforms -d 2 -i chicken-3-seg.nii.gz -o chicken-3-segw.nii.gz -r chicken-4.jpg -t chicken3to4.mat -n NearestNeighbor
Now convert to csv files to take a look at point-wise results.
ImageMath 2 chicken-3.csv LabelStats chicken-3-seg.nii.gz chicken-3-seg.nii.gz
ImageMath 2 chicken-3w.csv LabelStats chicken-3-segw.nii.gz chicken-3-segw.nii.gz
Transform the points.
antsApplyTransformsToPoints -d 2 -i chicken-3.csv -o test.csv -t [chicken3to4.mat ,1 ]
And compare - test.csv should be similar to chicken-3w.csv ...
The example images are here: