Create a table with the column names (attributeName) of a csv file (or similar) and fill in some other columns, the following table is an example
library(EML)
attributes <-tibble::tribble(
~attributeName, ~attributeDefinition, ~formatString, ~definition, ~unit, ~numberType,
"run.num", "which run number (=block). Range: 1 - 6. (integer)", NA, "which run number", NA, NA,
"year", "year, 2012", "YYYY", NA, NA, NA,
"day", "Julian day. Range: 170 - 209.", "DDD", NA, NA, NA,
"hour.min", "hour and minute of observation. Range 1 - 2400 (integer)", "hhmm", NA, NA, NA,
"i.flag", "is variable Real, Interpolated or Bad (character/factor)", NA, NA, NA, NA,
"variable", "what variable being measured in what treatment (character/factor).", NA, NA, NA, NA,
"value.i", "value of measured variable for run.num on year/day/hour.min.", NA, NA, NA, NA,
"length", "length of the species in meters (dummy example of numeric data)", NA, NA, "meter", "real")
attributeName | attributeDefinition | formatString | definition | unit | numberType |
---|---|---|---|---|---|
run.num | which run number (=block). Range: 1 - 6. (integer) | NA | which run number | NA | NA |
year | year, 2012 | YYYY | NA | NA | NA |
day | Julian day. Range: 170 - 209. | DDD | NA | NA | NA |
hour.min | hour and minute of observation. Range 1 - 2400 (integer) | hhmm | NA | NA | NA |
i.flag | is variable Real, Interpolated or Bad (character/factor) | NA | NA | NA | NA |
variable | what variable being measured in what treatment (character/factor). | NA | NA | NA | NA |
value.i | value of measured variable for run.num on year/day/hour.min. | NA | NA | NA | NA |
length | length of the species in meters (dummy example of numeric data) | NA | NA | meter | real |
i.flag <- c(R = "real",
I = "interpolated",
B = "bad")
variable <- c(
control = "no prey added",
low = "0.125 mg prey added ml-1 d-1",
med.low = "0,25 mg prey added ml-1 d-1",
med.high = "0.5 mg prey added ml-1 d-1",
high = "1.0 mg prey added ml-1 d-1",
air.temp = "air temperature measured just above all plants (1 thermocouple)",
water.temp = "water temperature measured within each pitcher",
par = "photosynthetic active radiation (PAR) measured just above all plants (1 sensor)"
)
value.i <- c(
control = "% dissolved oxygen",
low = "% dissolved oxygen",
med.low = "% dissolved oxygen",
med.high = "% dissolved oxygen",
high = "% dissolved oxygen",
air.temp = "degrees C",
water.temp = "degrees C",
par = "micromoles m-1 s-1"
)
## Write these into the data.frame format
factors <- rbind(
data.frame(
attributeName = "i.flag",
code = names(i.flag),
definition = unname(i.flag)
),
data.frame(
attributeName = "variable",
code = names(variable),
definition = unname(variable)
),
data.frame(
attributeName = "value.i",
code = names(value.i),
definition = unname(value.i)
)
)
which generates the following table
attributeName | code | definition |
---|---|---|
i.flag | R | real |
i.flag | I | interpolated |
i.flag | B | bad |
variable | control | no prey added |
variable | low | 0.125 mg prey added ml-1 d-1 |
variable | med.low | 0,25 mg prey added ml-1 d-1 |
variable | med.high | 0.5 mg prey added ml-1 d-1 |
variable | high | 1.0 mg prey added ml-1 d-1 |
variable | air.temp | air temperature measured just above all plants (1 thermocouple) |
variable | water.temp | water temperature measured within each pitcher |
variable | par | photosynthetic active radiation (PAR) measured just above all plants (1 sensor) |
value.i | control | % dissolved oxygen |
value.i | low | % dissolved oxygen |
value.i | med.low | % dissolved oxygen |
value.i | med.high | % dissolved oxygen |
value.i | high | % dissolved oxygen |
value.i | air.temp | degrees C |
value.i | water.temp | degrees C |
value.i | par | micromoles m-1 s-1 |
attributeList <- set_attributes(attributes,
factors,
col_classes = c("character", "Date", "Date", "Date", "factor", "factor", "factor", "numeric"))
physical <- set_physical("hf205-01-TPexp1.csv")
dataTable <- list(
entityName = "hf205-01-TPexp1.csv",
entityDescription = "tipping point experiment 1",
physical = physical,
attributeList = attributeList)
geographicDescription <- "Harvard Forest Greenhouse, Tom Swamp Tract (Harvard Forest)"
coverage <-
set_coverage(begin = '2012-06-01', end = '2013-12-31',
sci_names = "Sarracenia purpurea",
geographicDescription = geographicDescription,
west = -122.44, east = -117.15,
north = 37.38, south = 30.00,
altitudeMin = 160, altitudeMaximum = 330,
altitudeUnits = "meter")
The main author
R_person <- person(given = "Aaron",
family = "Ellison",
email = "fakeaddress@email.com",
role = "cre",
comment = c(ORCID = "0000-0003-4151-6081"))
aaron <- as_emld(R_person)
and some collaborators
- go to this link
- Good reproduction list on clean data