This Repository is for learning python needed for AI and Machine Learning and Data Science - This is one stop repo for anything related to python for AI , ML and Data Science. Feel Free to Contribute to it
- 1_1_Introduction/ (Basics of Python, syntax, interpreter)
- 1_2_ControlStructures/ (if-else, loops, etc.)
- 1_3_Functions/ (Function definitions, arguments, return values)
- 1_4_ModulesAndPackages/ (Importing modules, exploring standard libraries)
- 1_5_FileIO/ (Reading and writing files)
- 1_6_ExceptionHandling/ (try-except blocks, raising exceptions)
- 2_1_ListsAndTuples/ (Creation, manipulation, and usage)
- 2_2_Dictionaries/ (Key-value pairs, dictionary methods)
- 2_3_Sets/ (Set operations and methods)
- 2_4_StringManipulation/ (String methods, formatting)
- 2_5_AdvancedDataStructures/ (Collections module, data structures like heap, queue)
- 3_1_ClassesAndObjects/ (Defining classes, creating objects)
- 3_2_Inheritance/ (Deriving classes, method overriding)
- 3_3_Polymorphism/ (Concepts, practical applications)
- 3_4_Encapsulation/ (Private and protected members, getters and setters)
- 3_5_AdvancedOOPConcepts/ (Metaclasses, decorators, class and static methods)
- 4_1_1_Basics/ (DataFrame creation, basic operations)
- 4_1_2_DataCleaning/ (Handling missing data, data transformation)
- 4_1_3_DataTransformation/ (Grouping, merging, pivot tables)
- 4_1_4_AdvancedPandasTechniques/ (Time series, categorical data)
- 4_2_1_Basics/ (Array creation, basic array operations)
- 4_2_2_ArrayOperations/ (Indexing, slicing, reshaping arrays)
- 4_2_3_LinearAlgebra/ (Matrix operations, eigenvalues)
- 4_2_4_StatisticalFunctions/ (Descriptive statistics, random sampling)
- 5_1_1_Basics/ (Plot types, labels, legends)
- 5_1_2_AdvancedPlots/ (Histograms, scatter plots, 3D plots)
- 5_1_3_Customizations/ (Styling, themes, annotations)
- 5_2_1_Basics/ (Data visualization using Seaborn)
- 5_2_2_StatisticalPlots/ (Box plots, violin plots)
- 5_2_3_ThemesAndStyles/ (Customizing plots with Seaborn)
- 5_3_1_Bokeh/ (Interactive plotting with Bokeh)
- 5_3_2_Plotly/ (Creating interactive plots with Plotly)
- 6_1_1_SupervisedLearning/ (Classification, regression)
- 6_1_2_UnsupervisedLearning/ (Clustering, dimensionality reduction)
- 6_1_3_ModelEvaluation/ (Cross-validation, performance metrics)
- 6_1_4_FeatureEngineering/ (Feature selection, feature extraction)
- 7_1_1_Basics/ (Introduction to TensorFlow, basic operations)
- 7_1_2_Models/ (Building and training neural network models)
- 7_1_3_AdvancedTechniques/ (Custom layers, loss functions, optimizers)
- 7_2_1_Basics/ (Fundamentals of PyTorch)
- 7_2_2_Models/ (Neural network design and implementation)
- 7_2_3_AdvancedTechniques/ (Autograd, dynamic computation graphs)
- 7_3_1_Basics/ (Keras for building and training models)
- 7_3_2_Models/ (Sequential and functional API)
- 7_3_3_AdvancedTechniques/ (Custom callbacks, layers, and training loops)
- 8_1_1_Basics/ (Scientific computing with SciPy)
- 8_1_2_Optimization/ (Optimization algorithms)
- 8_1_3_Integration/ (Numerical integration techniques)
- 8_1_4_Interpolation/ (Data interpolation and smoothing)
- 8_2_1_Basics/ (Symbolic mathematics in Python)
- 8_2_2_Algebra/ (Solving equations, algebraic manipulations)
- 8_2_3_Calculus/ (Differentiation, integration, series expansion)
- 8_3_1_NetworkX/ (Graph theory in Python)
- 8_3_2_NLTK/ (Natural Language Processing with Python)
-
9_1_Probability/ (Basics of probability theory) `
-
9_2_StatisticalTesting/ (Hypothesis testing, p-values, confidence intervals)
-
9_3_LinearAlgebra/ (Matrix operations, vector spaces, eigenvalues)
-
9_4_Calculus/ (Limits, derivatives, integrals, multivariable calculus)
-
9_5_DiscreteMathematics/ (Logic, set theory, combinatorics)