/yolov3

YOLOv3 in PyTorch > ONNX > CoreML > iOS

Primary LanguagePythonGNU General Public License v3.0GPL-3.0

Introduction

This directory contains PyTorch YOLOv3 software and an iOS App developed by Ultralytics LLC, and is freely available for redistribution under the GPL-3.0 license. For more information please visit https://www.ultralytics.com.

Description

The https://github.com/ultralytics/yolov3 repo contains inference and training code for YOLOv3 in PyTorch. The code works on Linux, MacOS and Windows. Training is done on the COCO dataset by default: https://cocodataset.org/#home. Credit to Joseph Redmon for YOLO: https://pjreddie.com/darknet/yolo/.

Requirements

Python 3.7 or later with the following pip3 install -U -r requirements.txt packages:

  • numpy
  • torch >= 1.1.0
  • opencv-python
  • tqdm

Tutorials

Jupyter Notebook

A jupyter notebook with training, detection and testing examples is available at: https://colab.research.google.com/drive/1G8T-VFxQkjDe4idzN8F-hbIBqkkkQnxw

Training

Start Training: python3 train.py to begin training after downloading COCO data with data/get_coco_dataset.sh.

Resume Training: python3 train.py --resume to resume training from weights/latest.pt.

Each epoch trains on 117,263 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set. Default training settings produce loss plots below, with training speed of 0.25 s/batch on a V100 GPU (almost 50 COCO epochs/day).

Here we see training results from coco_1img.data, coco_10img.data and coco_100img.data, 3 example files available in the data/ folder, which train and test on the first 1, 10 and 100 images of the coco2014 trainval dataset.

from utils import utils; utils.plot_results() results

Image Augmentation

datasets.py applies random OpenCV-powered (https://opencv.org/) augmentation to the input images in accordance with the following specifications. Augmentation is applied only during training, not during inference. Bounding boxes are automatically tracked and updated with the images. 416 x 416 examples pictured below.

Augmentation Description
Translation +/- 10% (vertical and horizontal)
Rotation +/- 5 degrees
Shear +/- 2 degrees (vertical and horizontal)
Scale +/- 10%
Reflection 50% probability (horizontal-only)
HSV Saturation +/- 50%
HSV Intensity +/- 50%

Speed

https://cloud.google.com/deep-learning-vm/
Machine type: n1-standard-8 (8 vCPUs, 30 GB memory)
CPU platform: Intel Skylake
GPUs: K80 ($0.198/hr), P4 ($0.279/hr), T4 ($0.353/hr), P100 ($0.493/hr), V100 ($0.803/hr)
HDD: 100 GB SSD
Dataset: COCO train 2014

GPUs batch_size batch time epoch time epoch cost
(images) (s/batch)
1 K80 16 1.43s 175min $0.58
1 P4 8 0.51s 125min $0.58
1 T4 16 0.78s 94min $0.55
1 P100 16 0.39s 48min $0.39
2 P100 32 0.48s 29min $0.47
4 P100 64 0.65s 20min $0.65
1 V100 16 0.25s 31min $0.41
2 V100 32 0.29s 18min $0.48
4 V100 64 0.41s 13min $0.70
8 V100 128 0.49s 7min $0.80

Inference

Run detect.py to apply trained weights to an image, such as zidane.jpg from the data/samples folder:

YOLOv3: python3 detect.py --cfg cfg/yolov3.cfg --weights weights/yolov3.weights

YOLOv3-tiny: python3 detect.py --cfg cfg/yolov3-tiny.cfg --weights weights/yolov3-tiny.weights

YOLOv3-SPP: python3 detect.py --cfg cfg/yolov3-spp.cfg --weights weights/yolov3-spp.weights

Webcam

Run detect.py with webcam=True to show a live webcam feed.

Pretrained Weights

Darknet Conversion

git clone https://github.com/ultralytics/yolov3 && cd yolov3

# convert darknet cfg/weights to pytorch model
python3  -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.weights')"
Success: converted 'weights/yolov3-spp.weights' to 'converted.pt'

# convert cfg/pytorch model to darknet weights
python3  -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.pt')"
Success: converted 'weights/yolov3-spp.pt' to 'converted.weights'

mAP

  • Use test.py --weights weights/yolov3.weights to test the official YOLOv3 weights.
  • Use test.py --weights weights/latest.pt to test the latest training results.
  • Compare to darknet published results https://arxiv.org/abs/1804.02767.
ultralytics/yolov3 darknet
YOLOv3 320 51.8 51.5
YOLOv3 416 55.4 55.3
YOLOv3 608 58.2 57.9
YOLOv3-spp 320 52.4 -
YOLOv3-spp 416 56.5 -
YOLOv3-spp 608 60.7 60.6
git clone https://github.com/ultralytics/yolov3
# bash yolov3/data/get_coco_dataset.sh
git clone https://github.com/cocodataset/cocoapi && cd cocoapi/PythonAPI && make && cd ../.. && cp -r cocoapi/PythonAPI/pycocotools yolov3
cd yolov3
 
python3 test.py --save-json --img-size 416
Namespace(batch_size=32, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data_cfg='data/coco.data', img_size=416, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3-spp.weights')
Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)
               Class    Images   Targets         P         R       mAP        F1
Calculating mAP: 100%|█████████████████████████████████████████| 157/157 [05:59<00:00,  1.71s/it]
                 all     5e+03  3.58e+04     0.109     0.773      0.57     0.186
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.335
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.565
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.349
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.151
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.360
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.493
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.280
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.432
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.458
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.255
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.494
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.620

python3 test.py --save-json --img-size 608 --batch-size 16
Namespace(batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data_cfg='data/coco.data', img_size=608, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3-spp.weights')
Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)
               Class    Images   Targets         P         R       mAP        F1
Computing mAP: 100%|█████████████████████████████████████████| 313/313 [06:11<00:00,  1.01it/s]
                 all     5e+03  3.58e+04      0.12      0.81     0.611     0.203
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.366
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.607
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.386
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.207
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.391
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.485
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.296
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.464
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.494
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.331
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.517
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.618

Citation

DOI

Contact

Issues should be raised directly in the repository. For additional questions or comments please email Glenn Jocher at glenn.jocher@ultralytics.com or visit us at https://contact.ultralytics.com.