This is an attempt to build a locally hosted version of GitHub Copilot. It uses the SalesForce CodeGen models inside of NVIDIA's Triton Inference Server with the FasterTransformer backend.
You'll need:
- Docker
docker-compose
>= 1.28- An NVIDIA GPU with enough VRAM to run the model you want.
Note that the VRAM requirements listed by setup.sh
are total -- if you have multiple GPUs, you can split the model across them. So, if you have two NVIDIA RTX 3080 GPUs, you should be able to run the 6B model by putting half on each GPU.
lmao
Run the setup script to choose a model to use. This will download the model from Huggingface and then convert it for use with FasterTransformer. Right now the 2B model is not available because of a hard-coded check in FasterTransformer that excludes it; hopefully this can be fixed soon!
$ ./setup.sh
Models available:
[1] codegen-350M-mono (2GB total VRAM required; Python-only)
[2] codegen-350M-multi (2GB total VRAM required; multi-language)
[3] codegen-6B-mono (13GB total VRAM required; Python-only)
[4] codegen-6B-multi (13GB total VRAM required; multi-language)
[5] codegen-16B-mono (32GB total VRAM required; Python-only)
[6] codegen-16B-multi (32GB total VRAM required; multi-language)
Enter your choice [4]: 2
Enter number of GPUs [1]: 1
Where do you want to save the model [/home/moyix/git/fauxpilot/models]? /fastdata/mymodels
Downloading and converting the model, this will take a while...
Converting model codegen-350M-multi with 1 GPUs
Loading CodeGen model
Downloading config.json: 100%|██████████| 996/996 [00:00<00:00, 1.25MB/s]
Downloading pytorch_model.bin: 100%|██████████| 760M/760M [00:11<00:00, 68.3MB/s]
Creating empty GPTJ model
Converting...
Conversion complete.
Saving model to codegen-350M-multi-hf...
=============== Argument ===============
saved_dir: /models/codegen-350M-multi-1gpu/fastertransformer/1
in_file: codegen-350M-multi-hf
trained_gpu_num: 1
infer_gpu_num: 1
processes: 4
weight_data_type: fp32
========================================
transformer.wte.weight
transformer.h.0.ln_1.weight
[... more conversion output trimmed ...]
transformer.ln_f.weight
transformer.ln_f.bias
lm_head.weight
lm_head.bias
Done! Now run ./launch.sh to start the FauxPilot server.
Then you can just run ./launch.sh
:
$ ./launch.sh
[+] Running 2/0
⠿ Container fauxpilot-triton-1 Created 0.0s
⠿ Container fauxpilot-copilot_proxy-1 Created 0.0s
Attaching to fauxpilot-copilot_proxy-1, fauxpilot-triton-1
fauxpilot-triton-1 |
fauxpilot-triton-1 | =============================
fauxpilot-triton-1 | == Triton Inference Server ==
fauxpilot-triton-1 | =============================
fauxpilot-triton-1 |
fauxpilot-triton-1 | NVIDIA Release 22.06 (build 39726160)
fauxpilot-triton-1 | Triton Server Version 2.23.0
fauxpilot-triton-1 |
fauxpilot-triton-1 | Copyright (c) 2018-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
fauxpilot-triton-1 |
fauxpilot-triton-1 | Various files include modifications (c) NVIDIA CORPORATION & AFFILIATES. All rights reserved.
fauxpilot-triton-1 |
fauxpilot-triton-1 | This container image and its contents are governed by the NVIDIA Deep Learning Container License.
fauxpilot-triton-1 | By pulling and using the container, you accept the terms and conditions of this license:
fauxpilot-triton-1 | https://developer.nvidia.com/ngc/nvidia-deep-learning-container-license
fauxpilot-copilot_proxy-1 | WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead.
fauxpilot-copilot_proxy-1 | * Debug mode: off
fauxpilot-copilot_proxy-1 | * Running on all addresses (0.0.0.0)
fauxpilot-copilot_proxy-1 | WARNING: This is a development server. Do not use it in a production deployment.
fauxpilot-copilot_proxy-1 | * Running on http://127.0.0.1:5000
fauxpilot-copilot_proxy-1 | * Running on http://172.18.0.3:5000 (Press CTRL+C to quit)
fauxpilot-triton-1 |
fauxpilot-triton-1 | ERROR: This container was built for NVIDIA Driver Release 515.48 or later, but
fauxpilot-triton-1 | version was detected and compatibility mode is UNAVAILABLE.
fauxpilot-triton-1 |
fauxpilot-triton-1 | [[]]
fauxpilot-triton-1 |
fauxpilot-triton-1 | I0803 01:51:02.690042 93 pinned_memory_manager.cc:240] Pinned memory pool is created at '0x7f6104000000' with size 268435456
fauxpilot-triton-1 | I0803 01:51:02.690461 93 cuda_memory_manager.cc:105] CUDA memory pool is created on device 0 with size 67108864
fauxpilot-triton-1 | I0803 01:51:02.692434 93 model_repository_manager.cc:1191] loading: fastertransformer:1
fauxpilot-triton-1 | I0803 01:51:02.936798 93 libfastertransformer.cc:1226] TRITONBACKEND_Initialize: fastertransformer
fauxpilot-triton-1 | I0803 01:51:02.936818 93 libfastertransformer.cc:1236] Triton TRITONBACKEND API version: 1.10
fauxpilot-triton-1 | I0803 01:51:02.936821 93 libfastertransformer.cc:1242] 'fastertransformer' TRITONBACKEND API version: 1.10
fauxpilot-triton-1 | I0803 01:51:02.936850 93 libfastertransformer.cc:1274] TRITONBACKEND_ModelInitialize: fastertransformer (version 1)
fauxpilot-triton-1 | W0803 01:51:02.937855 93 libfastertransformer.cc:149] model configuration:
fauxpilot-triton-1 | {
[... lots more output trimmed ...]
fauxpilot-triton-1 | I0803 01:51:04.711929 93 libfastertransformer.cc:321] After Loading Model:
fauxpilot-triton-1 | I0803 01:51:04.712427 93 libfastertransformer.cc:537] Model instance is created on GPU NVIDIA RTX A6000
fauxpilot-triton-1 | I0803 01:51:04.712694 93 model_repository_manager.cc:1345] successfully loaded 'fastertransformer' version 1
fauxpilot-triton-1 | I0803 01:51:04.712841 93 server.cc:556]
fauxpilot-triton-1 | +------------------+------+
fauxpilot-triton-1 | | Repository Agent | Path |
fauxpilot-triton-1 | +------------------+------+
fauxpilot-triton-1 | +------------------+------+
fauxpilot-triton-1 |
fauxpilot-triton-1 | I0803 01:51:04.712916 93 server.cc:583]
fauxpilot-triton-1 | +-------------------+-----------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------+
fauxpilot-triton-1 | | Backend | Path | Config |
fauxpilot-triton-1 | +-------------------+-----------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------+
fauxpilot-triton-1 | | fastertransformer | /opt/tritonserver/backends/fastertransformer/libtriton_fastertransformer.so | {"cmdline":{"auto-complete-config":"false","min-compute-capability":"6.000000","backend-directory":"/opt/tritonserver/backends","default-max-batch-size":"4"}} |
fauxpilot-triton-1 | +-------------------+-----------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------+
fauxpilot-triton-1 |
fauxpilot-triton-1 | I0803 01:51:04.712959 93 server.cc:626]
fauxpilot-triton-1 | +-------------------+---------+--------+
fauxpilot-triton-1 | | Model | Version | Status |
fauxpilot-triton-1 | +-------------------+---------+--------+
fauxpilot-triton-1 | | fastertransformer | 1 | READY |
fauxpilot-triton-1 | +-------------------+---------+--------+
fauxpilot-triton-1 |
fauxpilot-triton-1 | I0803 01:51:04.738989 93 metrics.cc:650] Collecting metrics for GPU 0: NVIDIA RTX A6000
fauxpilot-triton-1 | I0803 01:51:04.739373 93 tritonserver.cc:2159]
fauxpilot-triton-1 | +----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
fauxpilot-triton-1 | | Option | Value |
fauxpilot-triton-1 | +----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
fauxpilot-triton-1 | | server_id | triton |
fauxpilot-triton-1 | | server_version | 2.23.0 |
fauxpilot-triton-1 | | server_extensions | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_configuration system_shared_memory cuda_shared_memory binary_tensor_data statistics trace |
fauxpilot-triton-1 | | model_repository_path[0] | /model |
fauxpilot-triton-1 | | model_control_mode | MODE_NONE |
fauxpilot-triton-1 | | strict_model_config | 1 |
fauxpilot-triton-1 | | rate_limit | OFF |
fauxpilot-triton-1 | | pinned_memory_pool_byte_size | 268435456 |
fauxpilot-triton-1 | | cuda_memory_pool_byte_size{0} | 67108864 |
fauxpilot-triton-1 | | response_cache_byte_size | 0 |
fauxpilot-triton-1 | | min_supported_compute_capability | 6.0 |
fauxpilot-triton-1 | | strict_readiness | 1 |
fauxpilot-triton-1 | | exit_timeout | 30 |
fauxpilot-triton-1 | +----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
fauxpilot-triton-1 |
fauxpilot-triton-1 | I0803 01:51:04.740423 93 grpc_server.cc:4587] Started GRPCInferenceService at 0.0.0.0:8001
fauxpilot-triton-1 | I0803 01:51:04.740608 93 http_server.cc:3303] Started HTTPService at 0.0.0.0:8000
fauxpilot-triton-1 | I0803 01:51:04.781561 93 http_server.cc:178] Started Metrics Service at 0.0.0.0:8002
Once everything is up and running, you should have a server listening for requests on http://localhost:5000
. You can now talk to it using the standard OpenAI API (although the full API isn't implemented yet). For example, from Python, using the OpenAI Python bindings:
$ ipython
Python 3.8.10 (default, Mar 15 2022, 12:22:08)
Type 'copyright', 'credits' or 'license' for more information
IPython 8.2.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]: import openai
In [2]: openai.api_key = 'dummy'
In [3]: openai.api_base = 'http://127.0.0.1:5000/v1'
In [4]: result = openai.Completion.create(engine='codegen', prompt='def hello', max_tokens=16, temperature=0.1, stop=["\n\n"])
In [5]: result
Out[5]:
<OpenAIObject text_completion id=cmpl-6hqu8Rcaq25078IHNJNVooU4xLY6w at 0x7f602c3d2f40> JSON: {
"choices": [
{
"finish_reason": "stop",
"index": 0,
"logprobs": null,
"text": "() {\n return \"Hello, World!\";\n}"
}
],
"created": 1659492191,
"id": "cmpl-6hqu8Rcaq25078IHNJNVooU4xLY6w",
"model": "codegen",
"object": "text_completion",
"usage": {
"completion_tokens": 15,
"prompt_tokens": 2,
"total_tokens": 17
}
}
Perhaps more excitingly, you can configure the official VSCode Copilot plugin to use your local server. Just edit your settings.json
to add:
"github.copilot.advanced": {
"debug.overrideEngine": "codegen",
"debug.testOverrideProxyUrl": "http://localhost:5000",
"debug.overrideProxyUrl": "http://localhost:5000"
}
And you should be able to use Copilot with your own locally hosted suggestions! Of course, probably a lot of stuff is subtly broken. In particular, the probabilities returned by the server are partly fake. Fixing this would require changing FasterTransformer so that it can return log-probabilities for the top k tokens rather that just the chosen token.
Have fun!