The RAPIDS cuSignal project leverages CuPy, Numba, and the RAPIDS ecosystem for GPU accelerated signal processing. In some cases, cuSignal is a direct port of Scipy Signal to leverage GPU compute resources via CuPy but also contains Numba CUDA kernels for additional speedups for selected functions. cuSignal achieves its best gains on large signals and compute intensive functions but stresses online processing with zero-copy memory (pinned, mapped) between CPU and GPU.
NOTE: For the latest stable README.md ensure you are on the latest branch.
cuSignal has an API that mimics SciPy Signal. In depth functionality is displayed in the notebooks section of the repo, but let's examine the workflow for Polyphase Resampling under multiple scenarios:
Scipy Signal (CPU)
import numpy as np
from scipy import signal
start = 0
stop = 10
num_samps = int(1e8)
resample_up = 2
resample_down = 3
cx = np.linspace(start, stop, num_samps, endpoint=False)
cy = np.cos(-cx**2/6.0)
cf = signal.resample_poly(cy, resample_up, resample_down, window=('kaiser', 0.5))
This code executes on 2x Xeon E5-2600 in 2.36 sec.
cuSignal with Data Generated on the GPU with CuPy
import cupy as cp
import cusignal
start = 0
stop = 10
num_samps = int(1e8)
resample_up = 2
resample_down = 3
gx = cp.linspace(start, stop, num_samps, endpoint=False)
gy = cp.cos(-gx**2/6.0)
gf = cusignal.resample_poly(gy, resample_up, resample_down, window=('kaiser', 0.5))
This code executes on an NVIDIA P100 in 258 ms.
cuSignal with Data Generated on the CPU with Mapped, Pinned (zero-copy) Memory
import cupy as cp
import numpy as np
import cusignal
start = 0
stop = 10
num_samps = int(1e8)
resample_up = 2
resample_down = 3
# Generate Data on CPU
cx = np.linspace(start, stop, num_samps, endpoint=False)
cy = np.cos(-cx**2/6.0)
# Create shared memory between CPU and GPU and load with CPU signal (cy)
gpu_signal = cusignal.get_shared_mem(num_samps, dtype=np.complex128)
gpu_signal[:] = cy
gf = cusignal.resample_poly(gpu_signal, resample_up, resample_down, window=('kaiser', 0.5))
This code executes on an NVIDIA P100 in 154 ms.
cuSignal with Data Generated on the CPU and Copied to GPU [AVOID THIS FOR ONLINE SIGNAL PROCESSING]
import cupy as cp
import numpy as np
import cusignal
start = 0
stop = 10
num_samps = int(1e8)
resample_up = 2
resample_down = 3
# Generate Data on CPU
cx = np.linspace(start, stop, num_samps, endpoint=False)
cy = np.cos(-cx**2/6.0)
gf = cusignal.resample_poly(cp.asarray(cy), resample_up, resample_down, window=('kaiser', 0.5))
This code executes on an NVIDIA P100 in 728 ms.
- NVIDIA GPU (Maxwell or Newer GeForce/Tesla/Quadro)
- CUDA Divers
- Anaconda/Miniconda (3.7 version)
- CuPy >= 6.2.0
- Optional: RTL-SDR or other SDR Driver/Packaging. Find more information and follow the instructions for setup here.
NOTE: pyrtlsdr is not automatically installed with the default cusignal environment. To make use of some of the examples in the Notebooks, you'll need to buy/install an rtl-sdr and necessary software packages.
NOTE: if used with other portions of RAPIDS, then GPU needs to be Pascal or later, and CUDA 10+
conda install -c rapidsai-nightly -c conda-forge cusignal
-
Clone the repository
# Set the location to cuSignal in an environment variable CUSIGNAL_HOME export CUSIGNAL_HOME=$(pwd)/cusignal # Download the cuSignal repo git clone https://github.com/rapidsai/cusignal.git $CUSIGNAL_HOME
-
Download and install Anaconda or Miniconda then create the cuSignal conda environment:
Base environment (core dependencies for cuSignal)
cd $CUSIGNAL_HOME conda env create -f conda/environments/cusignal_base.yml
Full environment (including RAPIDS's cuDF, cuML, cuGraph, and PyTorch)
cd $CUSIGNAL_HOME conda env create -f conda/environments/cusignal_full.yml
-
Activate conda environment
conda activate cusignal
-
Install cuSignal module
cd $CUSIGNAL_HOME/python python setup.py install
or
cd $CUSIGNAL_HOME ./build.sh # install cuSignal to $PREFIX if set, otherwise $CONDA_PREFIX # run ./build.sh -h to print the supported command line options.
-
Once installed, periodically update environment
cd $CUSIGNAL_HOME conda env update -f conda/environments/cusignal_base.yml
-
Also, confirm unit testing via PyTest
cd $CUSIGNAL_HOME/python pytest -v # for verbose mode pytest -v -k <function name> # for more select testing
While there are many versions of Anaconda for AArch64 platforms, cuSignal has been tested and supports conda4aarch64. Conda4aarch64 is also described in the Numba aarch64 installation instructions. Further, it's assumed that your Jetson device is running a current edition of JetPack and contains the CUDA Toolkit.
-
Clone the repository
# Set the localtion to cuSignal in an environment variable CUSIGNAL_HOME export CUSIGNAL_HOME=$(pwd)/cusignal # Download the cuSignal repo git clone https://github.com/rapidsai/cusignal.git $CUSIGNAL_HOME
-
Install conda4aarch64 and create the cuSignal conda environment:
cd $CUSIGNAL_HOME conda env create -f conda/environments/cusignal_jetson_base.yml
-
Activate conda environment
conda activate cusignal
-
Install cuSignal module
cd $CUSIGNAL_HOME/python python setup.py install
or
cd $CUSIGNAL_HOME ./build.sh # install cuSignal to $PREFIX if set, otherwise $CONDA_PREFIX # run ./build.sh -h to print the supported command line options.
-
Once installed, periodically update environment
cd $CUSIGNAL_HOME conda env update -f conda/environments/cusignal_jetson_base.yml
-
Also, confirm unit testing via PyTest
cd $CUSIGNAL_HOME/python pytest -v # for verbose mode pytest -v -k <function name> # for more select testing
-
Download and install Andaconda for Windows. In an Anaconda Prompt, navigate to your checkout of cuSignal.
-
Create cuSignal conda environment
conda create --name cusignal
-
Activate conda environment
conda activate cusignal
-
Install cuSignal Core Dependencies
conda install numpy numba scipy cudatoolkit pip pip install cupy-cudaXXX
Where XXX is the version of the CUDA toolkit you have installed. 10.1, for example is
cupy-cuda101
. See the CuPy Documentation for information on getting Windows wheels for other versions of CUDA. -
Install cuSignal module
cd python python setup.py install
-
[Optional] Run tests In the cuSignal top level directory:
pip install pytest pytest
Review the CONTRIBUTING.md file for information on how to contribute code and issues to the project.
You can learn more about the cuSignal stack and motivations by viewing these GTC DC 2019 slides, located here. The recording of this talk can be found at GTC On Demand