/longsum0_dict_learning

Long-Span Summarization

Primary LanguagePythonMIT LicenseMIT

Long-Span Summarization

Code for ACL 2021 paper "Long-Span Summarization via Local Attention and Content Selection" (previously the title was "Long-Span Dependencies in Transformer-based Summarization Systems").

Requirements

  • python 3.7
  • torch 1.2.0
  • transformers (HuggingFace) 2.11.0

Overview

  1. train/ = training scripts for BART, LoBART, HierarchicalModel (MCS)
  2. decode/ = running decoding (inference) for BART, LoBART, MCS-extractive, MCS-attention, MCS-combined
  3. data/ = data modules, pre-processing, and sub-directories containing train/dev/test data
  4. models/ = defined LoBART & HierarchicalModel
  5. traintime_select/ = scripts for processing data for trainining (aka ORACLE methods, pad-rand, pad-lead, no-pad)
  6. conf/ = configuration files for training

Pipeline (before training starts)

  • Download data, e.g. Spotify Podcast, arXiv, PubMed & put in data/
  • Basic pre-processing (train/dev/test) & put in data/
  • ORACLE processing (train/dev/) & put in data/
  • Train HierModel (aka MCS) using data with basic pre-processing
  • MCS processing & put in data/
  • Train BART or LoBART using data above
  • Decode BART or LoBART (note that if MCS is applied, run MCS first i.e. save your data from MCS somewhere and load it)

Data Preparation

Spotify Podcast

  • Download link: https://podcastsdataset.byspotify.com/
  • See data/podcast_processor.py
  • We recommend splitting the data into chunks such that each chuck contains 10k instance, e.g. id0-id9999 in podcast_set0

arXiv & PubMed

Training BART & LoBART

Training:

python train/train_abssum.py conf.txt

Configurations:

Setting in conf.txt, e.g. conf/bart_podcast_v0.txt

  • bart_weights - pre-trained BART weights, e.g. facebook/bart-large-cnn
  • bart_tokenizer - pre-trained tokenizer, e.g. facebook/bart-large
  • model_name - model name to be saved
  • selfattn - full | local
  • multiple_input_span - maximum input span (multiple of 1024)
  • window_width - local self-attention width
  • save_dir - directory to save checkpoints
  • dataset - podcast
  • data_dir - path to data
  • optimizer - optimzer (currently only adam supported)
  • max_target_len - maximum target length
  • lr0 - lr0
  • warmup - warmup
  • batch_size - batch_size
  • gradient_accum - gradient_accum
  • valid_step - save a checkpoint every ...
  • total_step - maximum training steps
  • early_stop - stop training if validaation loss stops improving for ... times
  • random_seed - random_seed
  • use_gpu - True | False

Decoding (Inference) BART & LoBART

decoding:

python decode/decode_abssum.py \
    --load model_checkpoint
    --selfattn [full|local]
    --multiple_input_span INT
    --window_width INT
    --decode_dir output_dir
    --dataset [podcast|arxiv|pubmed]
    --datapath path_to_dataset
    --start_id 0
    --end_id 1000
    [--num_beams NUM_BEAMS]
    [--max_length MAX_LENGTH]
    [--min_length MIN_LENGTH]
    [--no_repeat_ngram_size NO_REPEAT_NGRAM_SIZE]
    [--length_penalty LENGTH_PENALTY]
    [--random_order [RANDOM_ORDER]]
    [--use_gpu [True|False]]

Training Hierarchical Model

python train/train_hiermodel.py conf.txt

see conf/hiermodel_v1.txt for an example of config file

Training-time Content Selection

step1: running oracle selection {pad|nopad} per sample/instance

python traintime_select/oracle_select_{pad|nopad}.py

step2: combine all test samples into one file

python traintime_select/oracle_select_combine.py

See traintime_select/README.md for more information about arguments.

Test-time Content Selection (e.g. MCS inference)

step1: running decoding for get attention & extractive labelling predictions (per sample)

python decode/inference_hiermodel.py

step2: combine all test samples into one file

python decode/inference_hiermodel_combine.py

See decode/README.md for more information about arguments.

Analysis

Requires package pytorch_memlab. Args: localattn = True if LoBART, False if BART, X = max. input length, Y = max. target length, W = local attention width (if localattn == True), B = batch size.

Memeory (BART & LoBART)

python analysis/memory_inspect.py localattn X Y W B

Time (BART & LoBART)

python analysis/speed_inspect.py localattn X Y W B num_iterations

Results using this repository

The outputs of our systems are available -- click the dataset in the table to download (note that after the unzipped files are id_decoded.txt). Note that podcast IDs are according to the order in metadata, and arxiv/pubmed IDs are according to the order in text file in the original data download. If you need to convert these IDs into article_id, refer to id_lists.

  • BART(1k,truncate)
Data ROUGE-1 ROUGE-2 ROUGE-L
Podcast 26.43 9.22 18.35
arXiv 44.96 17.25 39.76
PubMed 45.06 18.27 40.84
  • BART(1k,ORC-padrand) + ContentSelection
Data ROUGE-1 ROUGE-2 ROUGE-L
Podcast 27.28 9.82 19.00
arXiv 47.68 19.77 42.25
PubMed 46.49 19.45 42.04
  • LoBART(N=4096,W=1024,ORC-padrand)
Data ROUGE-1 ROUGE-2 ROUGE-L
Podcast 27.36 10.04 19.33
arXiv 46.59 18.72 41.24
PubMed 47.47 20.47 43.02
  • LoBART(N=4096,W=1024,ORC-padrand) + ContentSelection. This is the best configuration reported in the paper.
Data ROUGE-1 ROUGE-2 ROUGE-L
Podcast 27.81 10.30 19.61
arXiv 48.79 20.55 43.31
PubMed 48.06 20.96 43.56

Trained Weights

TRC=Truncate-training, ORC=Oracle-training

Model Trained on Data
LoBART(N=4096,W=1024)_TRC Podcast, arXiv, PubMed
LoBART(N=4096,W=1024)_ORC Podcast, arXiv, PubMed
Hierarchical-Model Podcast, arXiv, PubMed

Citation

@inproceedings{manakul-gales-2021-long,
    title = "Long-Span Summarization via Local Attention and Content Selection",
    author = "Manakul, Potsawee  and Gales, Mark",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.470",
    doi = "10.18653/v1/2021.acl-long.470",
    pages = "6026--6041",
}