/DeGiro-analytics

DeGiro Analytics and API

Primary LanguagePythonMIT LicenseMIT

Intro

This is a DeGiro analytics platform. DeGiro is a low-fee Dutch investment broker that, sadly, offers limited account analytics functionality. This project leverages DeGiro's private API and provides some investment performance analytics tools.

Requirments

pandas>=1.4.2 requests>=2.27.1

Installation

pip install degiro_analytics

Docker

If you prefer to run the project in Docker, I made an image available in Docker hub. It contains a Jupyter Notebook with getting-started examples.

docker pull dpokidin/degiro-analytics-notebook
docker run -p 8888:8888 dpokidin/degiro-analytics-notebook

Just copy the link with an automatically generated token and plug it to your browser to run Jupyter.

Hint: Make sure you don't have any existing notebooks running on port 8888.

Description

degiro_analytics/DegiroWrapper.py contains API to retrieve current portfolio information and product search. It does not include trading API. There are open-source projects implementing trading API.

degiro_analytics/utils.py contains various methods for portfolio analytics.

Examples

import pandas as pd
from degiro_analytics import DeGiroWrapper
from degiro_analytics.utils import irr, analytics
DGW = DeGiroWrapper(True, True, base_curr='EUR') # you will have to provide your credentials (and possibly multi-factor auth code)

Insights into your portfolio

pf = DGW.get_current_portfolio() # retrieves your current portfolio

Get price history of your portfolio constituents

P = DGW.get_prices(pf.index)
P = P.pivot(index='date', columns='name', values='price')
P = P.apply(lambda x: x/x.dropna().iloc[0]) # normalize by starting price
P.plot(title='Portfolio constituents perfomance', figsize=(15, 7))

png

Perfomance of your account

start_date = '01/01/2020' # use any date
T = DGW.get_transactions(start_date) # trasactions history
P = DGW.get_prices(T.productId.unique()) # get price history of all products from T
P = P[P.date>=T.date.min()]
P = pd.pivot_table(P, index='date', columns='productId', values='price', aggfunc='mean') # product per columns
P.fillna(method='ffill', inplace=True)
Q = pd.pivot_table(T, index='date', columns='productId', values='quantity', aggfunc='sum') # number of shares purchased, product per column
Q = Q.reindex(P.index.append(Q.index)).sort_index().fillna(0).cumsum() # portfolio quantities per day
idx = P.index.get_indexer(Q.index, method='nearest')
matched_P = P.iloc[idx].values

The following cell computes portfolio returns as $R_t = \frac{Q_{t-1}'P_t}{Q_{t-1}'P_{t-1}}$.

numerator = Q.shift().multiply(matched_P).sum(axis=1)
denominator = Q.multiply(matched_P).sum(axis=1).shift()
R = numerator/denominator
IDX = R.fillna(1).cumprod() # index (or normalized price) of the portfolio
IDX.plot(title='Account Portfolio Perfomance', figsize=(15, 7))

png

Some analytics

analytics(IDX) 
{'Mean return': 0.00027660251717962994,
 'Std': 0.010483131903391498,
 'Risk Adjusted Return': 0.02638548477007559,
 'Number of drawdowns': 28,
 'Maximum Drawdown': 0.25730401117784857,
 'Max drawdown duration (days)': 320,
 'Mean drawdown duration (days)': 26.035714285714285,
 'T': 570}

Cash Flows analysis and money weighted return (IRR)

cf_df = DGW.get_account_cash_flows('01/01/2000', fees=True, dividends=True)
cf = cf_df.set_index('date').CF
cf.loc[pd.to_datetime(DGW.today, dayfirst=True, utc=True)] = pf.Q.multiply(pf.price_base_curr).sum() # current portfolio value
mwr = irr(cf)
print('Money weighted return is', mwr)
Money weighted return is 0.008600000000000003

Search products

search_text = 'Microsoft'
product = DGW.lookup(search_text, limit=1)[0]
print('The current price of', product.name, 'is', product.closePrice, product.currency)
p = product.get_price_hist(convert=False).set_index('date').price
p.plot(title=product.name, figsize=(15,7))
The current price of Microsoft Corp is 229.25 USD

png

search_text = 'Apple'
product = DGW.lookup(search_text, limit=1)[0]
print('The current price of', product.name, 'is', product.closePrice, product.currency)
p = product.get_price_hist(history='1D', resolution='T1M', convert=False).set_index('date').price
p.plot(title=product.name + ' (intraday pricing)', figsize=(15,7))
The current price of Apple Inc is 140.42 USD

png

Search and analyze ETFs from core selection

etfs = DGW.search_etfs(only_free=True, limit=200) # returns all ETFs from DeGiro core selection

Loop through the ETFs and analyze the prices

out = []
for etf in etfs:
    p = etf.get_price_hist(resolution='1M')
    a = analytics(p.set_index('date').price)
    a['name'] = etf.name
    out.append(a)
pd.DataFrame(out).sort_values('Risk Adjusted Return')
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Mean return Std Risk Adjusted Return Number of drawdowns Maximum Drawdown Max drawdown duration (days) Mean drawdown duration (days) T name
185 -0.003599 0.024421 -0.147393 6 0.315074 1278 375.333333 80 Xtrackers USD Corporate Bond UCITS ETF 2D HEUR
100 -0.001715 0.012107 -0.141665 5 0.163109 852 329.000000 59 iShares Core Gl Aggregate Bd UCITS ETF EUR Hgd...
190 -0.012569 0.095570 -0.131513 2 0.624981 699 380.000000 27 The Medical Cannabis and Wellness UCITS ETF Acc
178 -0.012005 0.106949 -0.112248 2 0.649046 699 380.000000 27 Rize Medical Cannabis and Life Sciences UCITS ETF
106 -0.001573 0.015111 -0.104113 4 0.207632 1064 578.250000 80 Vanguard EUR Eurozone Government Bd UCITS ETF EUR
... ... ... ... ... ... ... ... ... ...
72 0.015837 0.052422 0.302098 14 0.243017 396 139.357143 78 SPDR MSCI World Technology UCITS ETF
63 0.012074 0.038280 0.315414 23 0.176644 518 166.782609 149 Amundi S&P 500 UCITS ETF- EUR (C)
14 0.015172 0.046238 0.328118 21 0.239507 365 175.523810 142 iShares NASDAQ 100 UCITS ETF USD (Acc)
172 0.023167 0.070230 0.329876 3 0.271599 365 284.333333 31 Lyx Msci Future Etf
149 0.025988 0.065900 0.394360 3 0.238976 365 294.333333 32 WisdomTree Battery Solutions UCITS ETF USD Acc

198 rows × 9 columns