/MAX-Scene-Classifier

Image classifier for physical places/locations, based on the Places365-CNN Model

Primary LanguagePythonApache License 2.0Apache-2.0

IBM Code Model Asset Exchange: Scene Classifier

This repository contains code to instantiate and deploy an image classification model. This model recognizes the 365 different classes of scene/location in the Places365-Standard subset of the Places2 Dataset. The model is based on the Places365-CNN Model and consists of a pre-trained deep convolutional net using the ResNet architecture, trained on the ImageNet-2012 data set. The pre-trained model is then fine-tuned on the Places365-Standard dataset. The input to the model is a 224x224 image, and the output is a list of estimated class probilities.

The specific model variant used in this repository is the PyTorch Places365 ResNet18 Model. The model files are hosted on IBM Cloud Object Storage. The code in this repository deploys the model as a web service in a Docker container. This repository was developed as part of the IBM Code Model Asset Exchange.

Model Metadata

Domain Application Industry Framework Training Data Input Data Format
Vision Image Classification General Pytorch Places365 Image (RGB/HWC)

References

Licenses

Component License Link
This repository Apache 2.0 LICENSE
Model Weights CC BY License Places365-CNN
Model Code (3rd party) MIT Places365-CNN
Test assets Various Asset README

Pre-requisites:

  • docker: The Docker command-line interface. Follow the installation instructions for your system.
  • The minimum recommended resources for this model is 2GB Memory and 2 CPUs.

Steps

  1. Deploy from Docker Hub
  2. Deploy on Kubernetes
  3. Run Locally

Deploy from Docker Hub

To run the docker image, which automatically starts the model serving API, run:

$ docker run -it -p 5000:5000 codait/max-scene-classifier

This will pull a pre-built image from Docker Hub (or use an existing image if already cached locally) and run it. If you'd rather checkout and build the model locally you can follow the run locally steps below.

Deploy on Kubernetes

You can also deploy the model on Kubernetes using the latest docker image on Docker Hub.

On your Kubernetes cluster, run the following commands:

$ kubectl apply -f https://raw.githubusercontent.com/IBM/MAX-Scene-Classifier/master/max-scene-classifier.yaml

The model will be available internally at port 5000, but can also be accessed externally through the NodePort.

Run Locally

  1. Build the Model
  2. Deploy the Model
  3. Use the Model
  4. Development
  5. Cleanup

1. Build the Model

Clone this repository locally. In a terminal, run the following command:

$ git clone https://github.com/IBM/MAX-Scene-Classifier.git

Change directory into the repository base folder:

$ cd MAX-Scene-Classifier

To build the docker image locally, run:

$ docker build -t max-scene-classifier .

All required model assets will be downloaded during the build process. Note that currently this docker image is CPU only (we will add support for GPU images later).

2. Deploy the Model

To run the docker image, which automatically starts the model serving API, run:

$ docker run -it -p 5000:5000 max-scene-classifier

3. Use the Model

The API server automatically generates an interactive Swagger documentation page. Go to http://localhost:5000 to load it. From there you can explore the API and also create test requests.

Use the model/predict endpoint to load a test image (you can use one of the test images from the assets folder) and get predicted labels for the image from the API.

Swagger Doc Screenshot

You can also test it on the command line, for example:

$ curl -F "image=@assets/acquarium.jpg" -XPOST http://localhost:5000/model/predict

You should see a JSON response like that below:

{
  "status": "ok",
  "predictions": [
    {
      "label_id": "9",
      "label": "aquarium",
      "probability": 0.97350615262985
    },
    {
      "label_id": "342",
      "label": "underwater\/ocean_deep",
      "probability": 0.0062678409740329
    },
    {
      "label_id": "297",
      "label": "science_museum",
      "probability": 0.005441018845886
    },
    {
      "label_id": "239",
      "label": "natural_history_museum",
      "probability": 0.00413528829813
    },
    {
      "label_id": "167",
      "label": "grotto",
      "probability": 0.0024146677460521
    }
  ]
}

4. Development

To run the Flask API app in debug mode, edit config.py to set DEBUG = True under the application settings. You will then need to rebuild the docker image (see step 1).

5. Cleanup

To stop the Docker container, type CTRL + C in your terminal.