pggen generates Go code to provide a typesafe wrapper to run Postgres queries.
If Postgres can run the query, pggen can generate code for it. The generated
code is strongly-typed with rich mappings between Postgres types and Go types
without relying on interface{}
. pggen uses prepared queries, so you don't
have to worry about SQL injection attacks.
How to use pggen in three steps:
-
Write arbitrarily complex SQL queries with a name and a
:one
,:many
, or:exec
annotation. Declare inputs withpggen.arg('input_name')
.-- name: SearchScreenshots :many SELECT ss.id, array_agg(bl) AS blocks FROM screenshots ss JOIN blocks bl ON bl.screenshot_id = ss.id WHERE bl.body LIKE pggen.arg('body') || '%' GROUP BY ss.id ORDER BY ss.id LIMIT pggen.arg('limit') OFFSET pggen.arg('offset');
-
Run pggen to generate Go code to create type-safe methods for each query.
pggen gen go \ --schema-glob schema.sql \ --query-glob 'screenshots/*.sql' \ --go-type 'int8=int' \ --go-type 'text=string'
That command generates methods and type definitions like below. The full example is in ./example/composite/query.sql.go.
type SearchScreenshotsParams struct { Body string Limit int Offset int } type SearchScreenshotsRow struct { ID int `json:"id"` Blocks []Blocks `json:"blocks"` } // Blocks represents the Postgres composite type "blocks". type Blocks struct { ID int `json:"id"` ScreenshotID int `json:"screenshot_id"` Body string `json:"body"` } func (q *DBQuerier) SearchScreenshots( ctx context.Context, params SearchScreenshotsParams, ) ([]SearchScreenshotsRow, error) { /* omitted */ }
-
Use the generated code.
var conn *pgx.Conn q := NewQuerier(conn) rows, err := q.SearchScreenshots(ctx, SearchScreenshotsParams{ Body: "some_prefix", Limit: 50, Offset: 200, })
Why should you use pggen
instead of the myriad of Go SQL bindings?
-
pggen generates code by introspecting the database system catalogs, so you can use any database extensions or custom methods and it will just work™. For database types that pggen doesn't recognize, you can provide your own type mappings.
-
pggen scales to Postgres databases of any size and supports incremental adoption. pggen is narrowly tailored to only generate code for queries you write in SQL. pggen will not create a model for every database object. Instead, pggen only generates structs necessary to run the queries you specify.
-
pggen works with any Postgres database with any extensions. Under the hood, pggen runs each query and uses the Postgres catalog tables,
pg_type
,pg_class
, andpg_attribute
, to get perfect type information for both the query parameters and result columns. -
pggen works with all Postgres queries. If Postgres can run the query, pggen can generate Go code for the query.
-
pggen uses pgx, a faster replacement for lib/pq, the original Go Postgres library that's now in maintenance mode.
-
pggen provides a batch (aka query pipelining) interface for each generated query with
pgx.Batch
. Query pipelining is the reason Postgres sits atop the TechEmpower benchmarks. Using a batch enables sending multiple queries in a single network round-trip instead of one network round-trip per query.
I'd like to try to convince you why you shouldn't use pggen. Often, this is far more revealing than the pitch.
-
You want auto-generated models for every table in your database. pggen only generates code for each query in a query file. pggen requires custom SQL for even the simplest CRUD queries. Use gorm or any of alternatives listed at awesome Go ORMs.
-
You use database other than Postgres. pggen only supports Postgres. sqlc, a similar tool which inspired pggen, has early support for MySQL.
-
You want an active-record pattern where models have methods like
find
,create
,update
, anddelete
. pggen only generates code for queries you write. Use gorm. -
You prefer building queries in a Go dialect instead of SQL. I'd recommend investing in really learning SQL; it will payoff. Otherwise, use squirrel, goqu, or go-sqlbuilder
-
You don't want to add a Postgres or Docker dependency to your build phase. Use sqlc, though you might still need Docker. sqlc generates code by parsing the schema file and queries in Go without using Postgres.
Precompiled binaries. Change the last two lines if you want to install somewhere
other than ~/bin/pggen
.
-
MacOS Apple Silicon (arm64)
PGGEN_URL='https://github.com/djsavvy/pggen/releases/latest/download/pggen-darwin-arm64.zip'; curl --silent --show-error --location --fail "$PGGEN_URL" --output "${TMPDIR:-/private/tmp}/pggen.zip" && unzip -p "${TMPDIR:-/private/tmp}/pggen.zip" pggen-darwin-arm64 > ~/bin/pggen && chmod +x ~/bin/pggen
-
MacOS Intel (amd64)
PGGEN_URL='https://github.com/djsavvy/pggen/releases/latest/download/pggen-darwin-amd64.zip'; curl --silent --show-error --location --fail "$PGGEN_URL" --output "${TMPDIR:-/private/tmp}/pggen.zip" && unzip -p "${TMPDIR:-/private/tmp}/pggen.zip" pggen-darwin-amd64 > ~/bin/pggen && chmod +x ~/bin/pggen
-
Linux (amd64)
PGGEN_URL='https://github.com/djsavvy/pggen/releases/latest/download/pggen-linux-amd64.zip'; curl --silent --show-error --location --fail "$PGGEN_URL" --output "${TMPDIR:-/tmp}/pggen.zip" && unzip -p "${TMPDIR:-/tmp}/pggen.zip" pggen-linux-amd64 > ~/bin/pggen && chmod +x ~/bin/pggen
-
Windows (amd64)
PGGEN_URL='https://github.com/djsavvy/pggen/releases/latest/download/pggen-windows-amd64.zip'; curl --silent --show-error --location --fail "$PGGEN_URL" --output "${TMPDIR:-/tmp}/pggen.zip" && unzip -p "${TMPDIR:-/tmp}/pggen.zip" pggen-windows-amd64.exe > ~/bin/pggen.exe && chmod +x ~/bin/pggen.exe
Make sure pggen works:
pggen gen go --help
Requires Go 1.16 because pggen uses go:embed
. Installs to $GOPATH/bin
.
go install github.com/djsavvy/pggen/cmd/pggen@latest
Make sure pggen works:
pggen gen go --help
Generate code using Docker to create the Postgres database from a schema file:
# --schema-glob runs all matching files on Dockerized Postgres during database
# creation.
pggen gen go \
--schema-glob author/schema.sql \
--query-glob author/query.sql
# Output: author/query.go.sql
# Or with multiple schema files. The schema files run on Postgres
# in the order they appear on the command line.
pggen gen go \
--schema-glob author/schema.sql \
--schema-glob book/schema.sql \
--schema-glob publisher/schema.sql \
--query-glob author/query.sql
# Output: author/query.sql.go
Generate code using an existing Postgres database (useful for custom setups):
pggen gen go \
--query-glob author/query.sql \
--postgres-connection "user=postgres port=5555 dbname=pggen"
# Output: author/query.sql.go
Generate code for multiple query files. All the query files must reside in
the same directory. If query files reside in different directories, you can use
--output-dir
to set a single output directory:
pggen gen go \
--schema-glob schema.sql \
--query-glob author/fiction.sql \
--query-glob author/nonfiction.sql \
--query-glob author/bestselling.sql
# Output: author/fiction.sql.go
# author/nonfiction.sql.go
# author/bestselling.sql.go
# Or, using a glob. Notice quotes around glob pattern to prevent shell
# expansion.
pggen gen go \
--schema-glob schema.sql \
--query-glob 'author/*.sql'
Examples embedded in the repo:
- ./example/acceptance_test.go - End-to-end examples of how to call pggen.
- ./example/author - A single table schema with simple queries.
- ./example/composite - Arrays of composite (aka row or table) types.
- ./example/custom_types - Mapping new Postgres types to Go types.
- ./example/device - Complex queries with a 1:many relationship between a
user
table anddevice
table. - ./example/enums - Postgres and Go enums.
- ./example/erp - A few tables with mildly complex queries.
- ./example/go_pointer_types - Mapping to pointer types like
*int
instead ofpgtype.Int8
. - ./example/ltree - Support for the ltree Postgres extension.
- ./example/nested - Complex, nested composite (aka row or table) types.
- ./example/pgcrypto - pgcrypto Postgres extension.
- ./example/syntax - A smoke test of interesting SQL syntax.
- ./example/void - Support for void in select columns.
-
JSON struct tags: All
<query_name>Row
structs include JSON struct tags using the Postgres column name. To change the struct tag, use an SQL column alias.-- name: FindAuthors :many SELECT first_name, last_name as family_name FROM author;
Generates:
type FindAuthorsRow struct { FirstName string `json:"first_name"` FamilyName string `json:"family_name"` }
-
Acronyms: Custom acronym support so that
author_id
renders asAuthorID
instead ofAuthorId
. Supports two formats:-
Long form:
--acronym <word>=<relacement>
: replaces<word>
with<replacement>
literally. Useful for plural acronyms likeauthor_ids
which should render asAuthorIDs
, notAuthorIds
. For the IDs example, use--acronym ids=IDs
. -
Short form:
--acronym <word>
: replaces<word>
with uppercase<WORD>
. Equivalent to--acronym <word>=<WORD>
By default, pggen includes
--acronym id
to renderid
asID
. -
-
Enums: Postgres enums map to Go string constant enums. The Postgres type:
CREATE TYPE device_type AS ENUM ('undefined', 'phone', 'ipad');
Generates the following Go code when used in a query:
// DeviceType represents the Postgres enum device_type. type DeviceType string const ( DeviceTypeUndefined DeviceType = "undefined" DeviceTypePhone DeviceType = "phone" DeviceTypeIpad DeviceType = "ipad" ) func (d DeviceType) String() string { return string(d) }
-
Custom types: Use a custom Go type to represent a Postgres type with the
--go-type
flag. The format is<pg_type>=<qualified_go_type>
. For example:pggen gen go \ --schema-glob example/custom_types/schema.sql \ --query-glob example/custom_types/query.sql \ --go-type 'int8=*int' \ --go-type 'int4=int' \ --go-type '_int4=[]int' \ --go-type 'text=*github.com/djsavvy/pggen/mytype.String' \ --go-type '_text=[]*github.com/djsavvy/pggen/mytype.String'
pgx must be able to decode the Postgres type using the given Go type. That means the Go type must fulfill at least one of following:
-
The Go type is a wrapper around primitive type, like
type AuthorID int
. pgx will use the decode methods on the underlying primitive type. -
The Go type implements both
pgtype.BinaryDecoder
andpgtype.TextDecoder
. pgx will use the correct decoder based on the wire format. See the pgtype repo for many example types. -
The pgx connection executing the query must have registered a data type using the Go type with
ConnInfo.RegisterDataType
. See the example/custom_types test for an example.ci := conn.ConnInfo() ci.RegisterDataType(pgtype.DataType{ Value: new(pgtype.Int2), Name: "my_int", OID: myIntOID, })
-
The Go type implements
sql.Scanner
. -
pgx is able to use reflection to build an object to write fields into.
-
-
Nested structs (composite types): pggen creates child structs to represent Postgres composite types that appear in output columns.
-- name: FindCompositeUser :one SELECT ROW (15, 'qux')::"user" AS "user";
Generates the following Go code:
// User represents the Postgres composite type "user". type User struct { ID pgtype.Int8 Name pgtype.Text } func (q *DBQuerier) FindCompositeUser(ctx context.Context) (User, error) {}
Let's say we have a database with the following schema in author/schema.sql
:
CREATE TABLE author (
author_id serial PRIMARY KEY,
first_name text NOT NULL,
last_name text NOT NULL,
suffix text NULL
)
First, write a query in the file author/query.sql
. The query name is
FindAuthors
and the query returns :many
rows. A query can return :many
rows, :one
row, or :exec
for update, insert, and delete queries.
-- FindAuthors finds authors by first name.
-- name: FindAuthors :many
SELECT * FROM author WHERE first_name = pggen.arg('first_name');
Second, use pggen to generate Go code to author/query.sql.go
:
pggen gen go \
--schema-glob author/schema.sql \
--query-glob author/query.sql
We'll walk through the generated file author/query.sql.go
:
-
The
Querier
interface defines the interface with methods for each SQL query. Each SQL query compiles into three methods, one method for to run query by itself, and two methods to support batching a query withpgx.Batch
.// Querier is a typesafe Go interface backed by SQL queries. // // Methods ending with Batch enqueue a query to run later in a pgx.Batch. After // calling SendBatch on pgx.Conn, pgxpool.Pool, or pgx.Tx, use the Scan methods // to parse the results. type Querier interface { // FindAuthors finds authors by first name. FindAuthors(ctx context.Context, firstName string) ([]FindAuthorsRow, error) // FindAuthorsBatch enqueues a FindAuthors query into batch to be executed // later by the batch. FindAuthorsBatch(batch *pgx.Batch, firstName string) // FindAuthorsScan scans the result of an executed FindAuthorsBatch query. FindAuthorsScan(results pgx.BatchResults) ([]FindAuthorsRow, error) }
To use the batch interface, create a
*pgx.Batch
, call the<query_name>Batch
methods, send the batch, and finally get the results with the<query_name>Scan
methods. See example/author/query.sql_test.go for complete example.q := NewQuerier(conn) batch := &pgx.Batch{} q.FindAuthorsBatch(batch, "alice") q.FindAuthorsBatch(batch, "bob") results := conn.SendBatch(context.Background(), batch) aliceAuthors, err := q.FindAuthorsScan(results) bobAuthors, err := q.FindAuthorsScan(results)
-
The
DBQuerier
struct implements theQuerier
interface with concrete implementations of each query method.type DBQuerier struct { conn genericConn }
-
Create
DBQuerier
withNewQuerier
. ThegenericConn
parameter is an interface over the different pgx connection transports so thatDBQuerier
doesn't force you to use a specific connection transport.*pgx.Conn
,pgx.Tx
, and*pgxpool.Pool
all implementgenericConn
.// NewQuerier creates a DBQuerier that implements Querier. conn is typically // *pgx.Conn, pgx.Tx, or *pgxpool.Pool. func NewQuerier(conn genericConn) *DBQuerier { return &DBQuerier{ conn: conn, } }
-
pggen embeds the SQL query formatted for a Postgres
PREPARE
statement with parameters indicated by$1
,$2
, etc. instead ofpggen.arg('first_name')
.const findAuthorsSQL = `SELECT * FROM author WHERE first_name = $1;`
-
pggen generates a row struct for each query named
<query_name>Row
. pggen transforms the output column names into struct field names fromlower_snake_case
toUpperCamelCase
in internal/casing/casing.go. pggen derives JSON struct tags from the Postgres column names. To change the JSON struct name, change the column name in the query.type FindAuthorsRow struct { AuthorID int32 `json:"author_id"` FirstName string `json:"first_name"` LastName string `json:"last_name"` Suffix pgtype.Text `json:"suffix"` }
As a convenience, if a query only generates a single column, pggen skips creating the
<query_name>Row
struct and returns the type directly. For example, the generated query forSELECT author_id from author
returnsint32
, not a<query_name>Row
struct.pggen infers struct field types by running the query. When Postgres returns query results, Postgres also sends the column types as a header for the results. pggen looks up the types in the header using the
pg_type
catalog table and chooses an appropriate Go type in internal/codegen/golang/gotype/types.go.Choosing an appropriate type is more difficult than might seem at first glance due to
null
. When Postgres reports that a column has a typetext
, that column can have bothtext
andnull
values. So, the Postgrestext
represented in Go can be either astring
ornil
.pgtype
provides nullable types for all built-in Postgres types. pggen tries to infer if a column is nullable or non-nullable. If a column is nullable, pggen uses apgtype
Go type likepgtype.Text
. If a column is non-nullable, pggen uses a more ergonomic type likestring
. pggen's nullability inference in internal/pginfer/nullability.go is rudimentary; a proper approach requires a full explain plan with some control flow analysis. -
Lastly, pggen generates the implementation for each query.
As a convenience, if a there are only one or two query parameters, pggen inlines the parameters into the method definition, as with
firstName
below. If there are three or more parameters, pggen creates a struct named<query_name>Params
to pass the parameters to the query method.// FindAuthors implements Querier.FindAuthors. func (q *DBQuerier) FindAuthors(ctx context.Context, firstName string) ([]FindAuthorsRow, error) { rows, err := q.conn.Query(ctx, findAuthorsSQL, firstName) if rows != nil { defer rows.Close() } if err != nil { return nil, fmt.Errorf("query FindAuthors: %w", err) } items := []FindAuthorsRow{} for rows.Next() { var item FindAuthorsRow if err := rows.Scan(&item.AuthorID, &item.FirstName, &item.LastName, &item.Suffix); err != nil { return nil, fmt.Errorf("scan FindAuthors row: %w", err) } items = append(items, item) } if err := rows.Err(); err != nil { return nil, err } return items, err }
See CONTRIBUTING.md and ARCHITECTURE.md.
pggen was directly inspired by sqlc. The primary difference between pggen and sqlc is how each tool infers the type and nullability of the input parameters and output columns for SQL queries.
sqlc parses the queries in Go code, using Cgo to call the Postgres parser.c
library. After parsing, sqlc infers the types of the query parameters and result
columns using custom logic in Go. In contrast, pggen gets the same type
information by running the queries on Postgres and then fetching the type
information for Postgres catalog tables.
Use sqlc if you don't wish to run Postgres to generate code or if you need better nullability analysis than pggen provides.
Use pggen if you can run Postgres for code generation, and you use complex queries that sqlc is unable to parse. Additionally, use pggen if you have a custom database setup that's difficult to replicate in a schema file. pggen supports running on any database with any extensions.