Identifying Craters left from wepons test using Convolutional Neural Network.
Crater Scraping is an ongoing research project that seeks to train a Convolutional Neural Network to identify and classify nuclear weapons test sites. Crater Scraping works by utilizing information from FOIA requests and research from military historians to scrape satellite imagery of weapons test sites. Images are then used to train a Neural Network to identify and classify man made geological events from satellite imagery.
Installation:
-
Install dlib, scikit-image and tensorflow.
-
Install the node prerequisites and create a directory to hold images:
cd scripts/node npm install googlemaps easyimage fast-csv turf @turf/invariant mkdir -p ../../images/crater ../../images/no_crater
-
Generate a Google Static Maps API key by going to the Google Static Maps API page and clicking the "GET KEY" button. Put the key in
scripts/node/config.js
. -
Run scraper.js to gather nuclear test site images:
node scraper.js
This should take about 10 minutes to collect approximately 2000 images.
-
Run random_scraper.js to gather satellite imagery of random places.
-
Convert the PNG images to JPG:
cd images/crater find . -type f -print0 | xargs -0 -n 1 -P 6 -I {} sh -c "gm convert {} -quality 90 {}.jpg && rm {}" cd ../images/no_crater find . -type f -print0 | xargs -0 -n 1 -P 6 -I {} sh -c "gm convert {} -quality 90 {}.jpg && rm {}"
-
Train the model:
python ~/tensorflow/tensorflow/examples/image_retraining/retrain.py \ --how_many_training_steps 4000 \ --output_graph=crater_graph.pb \ --output_labels=crater_labels.txt \ --image_dir=images
-
Run the classifier on a new image:
$ ~/tensorflow/bazel-bin/tensorflow/examples/label_image/label_image \ --graph=crater_graph.pb \ --labels=crater_labels.txt \ --output_layer=final_result \ --image=1.jpg \ --input_layer=Mul 2017-04-05 15:58:38.495479: I tensorflow/examples/label_image/main.cc:206] crater (1): 0.938558 2017-04-05 15:58:38.495497: I tensorflow/examples/label_image/main.cc:206] no crater (0): 0.0614419
- 11/23/2016 - Script to collect a google map of crater site and save as cropped image.
- 11/24/2016 - Script to convert crater images into Histogram of Oriented Gradients.
- 11/25/2016 - Compiled CSVs of nuclear tests and coordinates
- 11/26/2016 - Gathered all images...around 2000
- 12/3/2016 - Convolution with Tensorflow
- 12/5/2016 - Neural Net with tensor flow
- 12/7/2016 - retrain.py to train the final layer of a pretrained inception model
- 12/9/2016 - classifying images
This works to identify craters with better than average results. However, it is easy to fool if you feed an image of a desert to the network. Still is valuable code if all you want to do is scrape all 2000 images.
Thanks to johnston archives.