/fastText1607

Unofficial Implementation of "Bag of Tricks for Efficient Text Classification", 2016, Armand Joulin et al. (https://arxiv.org/pdf/1607.01759.pdf)

Primary LanguagePythonMIT LicenseMIT

Bag of Tricks for Efficient Text Classification, fastText

Unofficial PyTorch Implementation of "Bag of Tricks for Efficient Text Classification", 2016, A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov (https://arxiv.org/pdf/1607.01759.pdf)

  • The original model

    • fastText, h=10, bigram (See Table 1 of the paper)
  • Dataset

  • Experiment

    # Download a spacy "en_core_web_lg" model
    $ python3 -m spacy download en_core_web_lg --user
    
    # Download datasets (select your os (mac or ubuntu))
    $ sh download_datasets_mac.sh
    
    • AG
    # Create a pickle file: data/ag_news_csv/ag.pkl
    $ python3 dataset.py --data_dir ./data/ag_news_csv --pickle_name ag.pkl --num_classes 4 --max_len 467
    
    # Run
    $ python3 main.py --data_path ./data/ag_news_csv/ag.pkl --batch_size 2048 --lr 0.5 --log_interval 20
    
    • Sogou
    # Create a pickle file: data/sogou_news_csv/sogou.pkl
    $ python3 dataset.py --data_dir ./data/sogou_news_csv --pickle_name sogou.pkl --num_classes 5 --max_len 90064
    
    # Run
    $ python3 main.py --data_path ./data/sogou_news_csv/sogou.pkl --batch_size 1024 --lr 0.1 --log_interval 40
    
    • DBpedia
    # Create a pickle file: data/dbpedia_csv/dbp.pkl
    $ python3 dataset.py --data_dir ./data/dbpedia_csv --pickle_name dbp.pkl --num_classes 14 --max_len 3013
    
    # Run
    $ python3 main.py --data_path ./data/dbpedia_csv/dbp.pkl --batch_size 2048 --lr 0.1 --log_interval 20
    
    • Yelp P.
    # Create a pickle file: data/yelp_review_polarity_csv/yelp_p.pkl
    $ python3 dataset.py --data_dir ./data/yelp_review_polarity_csv --pickle_name yelp_p.pkl --num_classes 2 --max_len 2955
    
    # Run
    $ python3 main.py --data_path ./data/yelp_review_polarity_csv/yelp_p.pkl --batch_size 1024 --lr 0.1 --log_interval 40
    
    • Yelp F.
    # Create a pickle file: data/yelp_review_full_csv/yelp_f.pkl
    $ python3 dataset.py --data_dir ./data/yelp_review_full_csv --pickle_name yelp_f.pkl --num_classes 5 --max_len 2955
    
    # Run
    $ python3 main.py --data_path ./data/yelp_review_full_csv/yelp_f.pkl --batch_size 1024 --lr 0.05 --log_interval 40
    
    • Yahoo A.
    # Create a pickle file: data/yahoo_answers_csv/yahoo_a.pkl
    $ python3 dataset.py --data_dir ./data/yahoo_answers_csv --pickle_name yahoo_a.pkl --num_classes 10 --max_len 8024
    
    # Run
    $ python3 main.py --data_path ./data/yahoo_answers_csv/yahoo_a.pkl --batch_size 1024 --lr 0.05 --log_interval 40
    
    • Amazon F.
    # Create a pickle file: data/amazon_review_full_csv/amazon_f.pkl
    $ python3 dataset.py --data_dir ./data/amazon_review_full_csv --pickle_name amazon_f.pkl --num_classes 5 --max_len 1214
    
    # Run
    $ python3 main.py --data_path ./data/amazon_review_full_csv/amazon_f.pkl --batch_size 4096 --lr 0.25 --log_interval 10
    
    • Amazon P.
    # Create a pickle file: data/amazon_review_polarity_csv/amazon_p.pkl
    $ python3 dataset.py --data_dir ./data/amazon_review_polarity_csv --pickle_name amazon_p.pkl --num_classes 2 --max_len 1318
    
    # Run
    $ python3 main.py --data_path ./data/amazon_review_polarity_csv/yahoo_a.pkl --batch_size 4096 --lr 0.25 --log_interval 10
    
  • Performance (accuracy %)

    • Results may vary slightly depending on your experimental environment.
Model AG Sogou DBpedia Yelp P. Yelp F. Yahoo A. Amazon F. Amazon P.
fastText, h=10, bigram 92.5 96.8 98.6 95.7 63.9 72.3 60.2 94.6
My implementation of fastText 92.6 (Ep. 3) 97.1 (Ep. 5) 98.1 (Ep. 4) 95.7 (Ep. 1) 63.5 (Ep. 1) 72.5 (Ep. 1) 57.7 (Ep. 1) 94.3 (Ep. 1)
  • Training time for an epoch (CPU)
    • Results may vary slightly depending on your experimental environment.
fastText My implementation of fastText (Intel i7 8th gen.)
AG 1s 12s
Sogou 7s 30m
DBpedia 2s 3m
Yelp P. 3s 7m
Yelp F. 4s 8m
Yahoo A. 5s 24m
Amazon F. 9s 14m
Amazon P. 10s 15m
  • Dictionary size & data size
Dataset Size Is Hashing Trick needed? # train examples # test examples # classes
AG 1.4M No 120K 7.6K 4
Sogou 3.4M No 450K 60K 5
DBpedia 6.6M No 560K 70K 14
Yelp P. 6.4M No 560K 38K 2
Yelp F. 7.1M No 650K 50K 5
Yahoo A. 17.9M Yes 1.4M 60K 10
Amazon F. 21.7M Yes 3M 650K 5
Amazon P. 24.3M Yes 3.6M 400K 2