/crnn.pytorch

crnn实现水平和垂直方向中文文字识别, 提供在3w多个中文字符训练的水平识别和垂直识别的预训练模型; 欢迎关注,试用和反馈问题... ...

Primary LanguagePythonApache License 2.0Apache-2.0

crnn.pytorch

​ 本工程使用随机生成的水平和垂直图像训练crnn模型做文字识别;一共使用10多种不同字体;共包括数字、字符、简体和繁体中文字30656个,详见all_words.txt

  1. 预测
    1.1 直接预测
    1.2 使用restful服务预测
  2. 模型效果
    2.1 水平方向
    2.2 垂直方向
  3. 评估
  4. 训练

预测

直接预测

预训练模型下载地址:水平模型 crnn.horizontal.061.pth 提取码: fguu; 垂直模型 crnn.vertical.090.pth 提取码: ygx7。

a) 执行如下命令预测单个图像

# 水平方向
python demo.py --weight-path /path/to/chk.pth --image-path /path/to/image --direction horizontal
# 垂直方向
python demo.py --weight-path /path/to/chk.pth --image-path /path/to/image --direction vertical

b) 执行如下命令预测图像目录

# 水平方向
python demo.py --weight-path /path/to/chk.pth --image-dir /path/to/image/dir --direction horizontal
# 垂直方向
python demo.py --weight-path /path/to/chk.pth --image-dir /path/to/image/dir --direction vertical

使用restful服务预测

a) 启动restful服务

python rest.py -l /path/to/crnn.horizontal.061.pth -v /path/to/crnn.vertical.090.pth -d cuda

b) 使用如下代码预测,参考rest_test.py

import base64
import requests

img_path = './images/horizontal-002.jpg'

with open(img_path, 'rb') as fp:
    img_bytes = fp.read()

img = base64.b64encode(img_bytes).decode()
data = {'img': img}

r = requests.post("http://localhost:5000/crnn", json=data)

print(r.json()['text'])

结果如下:

 厘鳃 銎 萛闿 檭車 垰銰 陀 婬2 蠶

模型效果

​ 以下图像均来为生成器随机生成的,也可以试用自己的图像测试

水平方向

图像 识别结果
鎏贬冱剽粥碍辆置钷固闻塔ど船
厘鳃銎萛闿檭車垰銰陀婬2蠶
磨丢河窜蹬奶鼋
添肃琉恪范粼兢俺斋┟傺怃梗纱脉陷荼荡荫驿
荼反霎吕娟斑恃畀貅引铥哳断替碱嘏
汨鑅譜軥嶰細挓
讵居世鄄钷橄鸠乩嗓犷魄芈丝
憎豼蕖蚷願巇廾尖瞚寣眗媝页锧荰瞿睔
休衷餐郄俐徂煅黢让咣
桃顸噢伯臣

垂直方向

Image1 Image2 Image3 Image4 Image5 Image6 Image7 Image8 Image9 Image10

从左到右识别结果

蟒销咔侉糌圻
醵姹探里坌葺神赵漓
紊趼掰膊縉氺月
皱坊凋庳剜蓍赚拾赣缮
ⅲ樱妖遐灌纽枰孽笸逼⊙斟喧湄汇
铳颢汜橇忝稿┗淌㎞琉炭盛㈨事
ゆ囚具憎鉴蔟馍络ら裕翱偬
绸唿綜袼殊潸名廪收鈁跃唤蛴腕
斥嗡门彳鹪Ⅴ戝物据趱欹
覃追煮茫舔酾桎藏瘪挚檎笏嵊疙鹦

评估

a) 水平方向

python eval.py --weight-path /path/to/crnn.horizontal.061.pth \
--direction horizontal --device cuda

输出结果:acc:0.893

b) 垂直方向

python eval.py --weight-path /path/to/crnn.vertical.090.pth \
--direction vertical --device cuda

输出结果:acc:0.523

训练

a) 单机多卡

export CUDA_DEVICE_ORDER="PCI_BUS_ID"
export CUDA_VISIBLE_DEVICES=1,2,3,4
python -m torch.distributed.launch --nproc_per_node 4 train.py --device cuda --direction vertical

b) 多机多卡

# 第一台主机
export NCCL_SOCKET_IFNAME=eth0
export NCCL_IB_DISABLE=1
export CUDA_DEVICE_ORDER="PCI_BUS_ID"
export CUDA_VISIBLE_DEVICES=1,2,3
python -m torch.distributed.launch --nproc_per_node 3 --nnodes=2 --node_rank=0 \
--master_port=6066 --master_addr="192.168.0.1" \
train.py --device cuda --direction vertical 

# 第二台主机
export NCCL_SOCKET_IFNAME=eth0
export NCCL_IB_DISABLE=1
export CUDA_DEVICE_ORDER="PCI_BUS_ID"
export CUDA_VISIBLE_DEVICES=1,2,3
python -m torch.distributed.launch --nproc_per_node 3 --nnodes=2 --node_rank=1 \
--master_port=6066 --master_addr="192.168.0.1" \
train.py --device cuda --direction vertical 

存在问题:多机训练比单机要慢很多,目前尚未解决.