Pinned Repositories
2020-CMAPSS-RUL-Estimation
几种RUL预测模型实验
annotated-transformer
http://nlp.seas.harvard.edu/2018/04/03/attention.html
DAST
The code of DAST
iTransformer
Official implementation for "iTransformer: Inverted Transformers Are Effective for Time Series Forecasting" (ICLR 2024 Spotlight), https://openreview.net/forum?id=JePfAI8fah
mall
mall项目是一套电商系统,包括前台商城系统及后台管理系统,基于SpringBoot+MyBatis实现,采用Docker容器化部署。 前台商城系统包含首页门户、商品推荐、商品搜索、商品展示、购物车、订单流程、会员中心、客户服务、帮助中心等模块。 后台管理系统包含商品管理、订单管理、会员管理、促销管理、运营管理、内容管理、统计报表、财务管理、权限管理、设置等模块。
projectRUL
to prediction the remain useful life of bearing based on 2012 PHM data
projectRUL2
PyTorch-CNN-for-RUL-Prediction
PyTorch implementation of CNN for remaining useful life prediction. Inspired by Babu, G. S., Zhao, P., & Li, X. L. (2016, April). Deep convolutional neural network-based regression approach for estimation of remaining useful life. In International conference on database systems for advanced applications (pp. 214-228). Springer, Cham.
PyTorch-LSTM-for-RUL-Prediction
PyTorch implementation of remaining useful life prediction with long-short term memories (LSTM), performing on NASA C-MAPSS data sets. Partially inspired by Zheng, S., Ristovski, K., Farahat, A., & Gupta, C. (2017, June). Long short-term memory network for remaining useful life estimation.
Pytorch-Transfomer
My implementation of the transformer architecture from the Attention is All you need paper applied to time series.
dorafrodo's Repositories
dorafrodo/2020-CMAPSS-RUL-Estimation
几种RUL预测模型实验
dorafrodo/annotated-transformer
http://nlp.seas.harvard.edu/2018/04/03/attention.html
dorafrodo/DAST
The code of DAST
dorafrodo/iTransformer
Official implementation for "iTransformer: Inverted Transformers Are Effective for Time Series Forecasting" (ICLR 2024 Spotlight), https://openreview.net/forum?id=JePfAI8fah
dorafrodo/mall
mall项目是一套电商系统,包括前台商城系统及后台管理系统,基于SpringBoot+MyBatis实现,采用Docker容器化部署。 前台商城系统包含首页门户、商品推荐、商品搜索、商品展示、购物车、订单流程、会员中心、客户服务、帮助中心等模块。 后台管理系统包含商品管理、订单管理、会员管理、促销管理、运营管理、内容管理、统计报表、财务管理、权限管理、设置等模块。
dorafrodo/projectRUL
to prediction the remain useful life of bearing based on 2012 PHM data
dorafrodo/projectRUL2
dorafrodo/PyTorch-CNN-for-RUL-Prediction
PyTorch implementation of CNN for remaining useful life prediction. Inspired by Babu, G. S., Zhao, P., & Li, X. L. (2016, April). Deep convolutional neural network-based regression approach for estimation of remaining useful life. In International conference on database systems for advanced applications (pp. 214-228). Springer, Cham.
dorafrodo/PyTorch-LSTM-for-RUL-Prediction
PyTorch implementation of remaining useful life prediction with long-short term memories (LSTM), performing on NASA C-MAPSS data sets. Partially inspired by Zheng, S., Ristovski, K., Farahat, A., & Gupta, C. (2017, June). Long short-term memory network for remaining useful life estimation.
dorafrodo/Pytorch-Transfomer
My implementation of the transformer architecture from the Attention is All you need paper applied to time series.
dorafrodo/PyTorch-Transformer-for-RUL-Prediction
Transformer implementation with PyTorch for remaining useful life prediction on turbofan engine with NASA CMAPSS data set. Inspired by Mo, Y., Wu, Q., Li, X., & Huang, B. (2021). Remaining useful life estimation via transformer encoder enhanced by a gated convolutional unit. Journal of Intelligent Manufacturing, 1-10.
dorafrodo/Remaining-Useful-Life-Estimation-Variational
dorafrodo/RUL-Prediction
Remaining useful life estimation of NASA turbofan jet engines using data driven approaches which include regression models, LSTM neural networks and hybrid model which is combination of VAR with LSTM
dorafrodo/RUL1
Nasa turbofan dataset
dorafrodo/thingsboard
Open-source IoT Platform - Device management, data collection, processing and visualization.