/badata

Data from the Bundesagentur für Arbeit (BA)

Primary LanguageROtherNOASSERTION

badata

DOI Lifecycle: experimental

badata is a data package that provides data from the German Federal Employment Agency (Bundesagentur für Arbeit – BA) about unemployed persons, employees, and jobs in Germany from 2012 to 2021 by district (Kreis) and occupational group.

Installation

You can install the development version of badata from GitHub with:

# install.packages("devtools")
devtools::install_github("long39ng/badata")

Usage

badata provides the following datasets as tibbles/data.frames:

library(badata)

employees_by_workplace
#> # A tibble: 2,131,200 × 6
#>    region occupational_group  year type               group          n
#>    <chr>  <chr>              <int> <chr>              <chr>      <dbl>
#>  1 01001  111                 2016 social insurance   total        185
#>  2 01001  111                 2016 social insurance   foreigners    NA
#>  3 01001  111                 2016 social insurance   women         62
#>  4 01001  111                 2016 marginal part-time total          8
#>  5 01001  111                 2016 marginal part-time foreigners    NA
#>  6 01001  111                 2016 marginal part-time women         NA
#>  7 01001  111                 2017 social insurance   total         62
#>  8 01001  111                 2017 social insurance   foreigners     0
#>  9 01001  111                 2017 social insurance   women         12
#> 10 01001  111                 2017 marginal part-time total         13
#> # … with 2,131,190 more rows

employees_by_residence
#> # A tibble: 2,131,200 × 6
#>    region occupational_group  year type               group          n
#>    <chr>  <chr>              <int> <chr>              <chr>      <dbl>
#>  1 01001  111                 2016 social insurance   total        134
#>  2 01001  111                 2016 social insurance   foreigners     6
#>  3 01001  111                 2016 social insurance   women         48
#>  4 01001  111                 2016 marginal part-time total         19
#>  5 01001  111                 2016 marginal part-time foreigners    NA
#>  6 01001  111                 2016 marginal part-time women          5
#>  7 01001  111                 2017 social insurance   total         55
#>  8 01001  111                 2017 social insurance   foreigners     4
#>  9 01001  111                 2017 social insurance   women         12
#> 10 01001  111                 2017 marginal part-time total         24
#> # … with 2,131,190 more rows

unemployed_total
#> # A tibble: 580,000 × 5
#>    region occupational_group  year total women
#>    <chr>  <chr>              <int> <dbl> <dbl>
#>  1 01001  111                 2012  15.2  1.08
#>  2 01001  111                 2013  14.7  2   
#>  3 01001  111                 2014  12.5  1.58
#>  4 01001  111                 2015  10.8  1.5 
#>  5 01001  111                 2016  12.9  1.33
#>  6 01001  111                 2017  20.6  1   
#>  7 01001  111                 2018  19.7  2.5 
#>  8 01001  111                 2019  15.8  2.75
#>  9 01001  111                 2020  19.7  2.17
#> 10 01001  111                 2021  15.5  1.92
#> # … with 579,990 more rows

unemployed_foreigners
#> # A tibble: 580,000 × 5
#>    region occupational_group  year total women
#>    <chr>  <chr>              <int> <dbl> <dbl>
#>  1 01001  111                 2012  1.92 0.917
#>  2 01001  111                 2013  2.58 1.17 
#>  3 01001  111                 2014  1.33 0    
#>  4 01001  111                 2015  1.92 0    
#>  5 01001  111                 2016  4.17 0    
#>  6 01001  111                 2017 10.8  0    
#>  7 01001  111                 2018  8.67 0    
#>  8 01001  111                 2019  7.5  1.08 
#>  9 01001  111                 2020  9.42 0.75 
#> 10 01001  111                 2021  6    0.667
#> # … with 579,990 more rows

jobs
#> # A tibble: 581,450 × 5
#>    region occupational_group  year  total social_insurance
#>    <chr>  <chr>              <int>  <dbl>            <dbl>
#>  1 01001  111                 2012 0.0833           0.0833
#>  2 01001  111                 2013 0.0833           0.0833
#>  3 01001  111                 2014 0.417            0.333 
#>  4 01001  111                 2015 0.333            0.333 
#>  5 01001  111                 2016 0                0     
#>  6 01001  111                 2017 0.25             0.25  
#>  7 01001  111                 2018 0                0     
#>  8 01001  111                 2019 0.0833           0.0833
#>  9 01001  111                 2020 0.0833           0.0833
#> 10 01001  111                 2021 0.25             0.25  
#> # … with 581,440 more rows

Codes and full names of regions and occupational groups can be looked up in the respective tables:

region_codes
#> # A tibble: 401 × 2
#>    code  name                  
#>    <chr> <chr>                 
#>  1 01001 Flensburg, Stadt      
#>  2 01002 Kiel, Landeshauptstadt
#>  3 01003 Lübeck, Hansestadt    
#>  4 01004 Neumünster, Stadt     
#>  5 01051 Dithmarschen          
#>  6 01053 Herzogtum Lauenburg   
#>  7 01054 Nordfriesland         
#>  8 01055 Ostholstein           
#>  9 01056 Pinneberg             
#> 10 01057 Plön                  
#> # … with 391 more rows

occupational_group_codes
#> # A tibble: 145 × 2
#>    code  name                                    
#>    <chr> <chr>                                   
#>  1 111   Landwirtschaft                          
#>  2 112   Tierwirtschaft                          
#>  3 113   Pferdewirtschaft                        
#>  4 114   Fischwirtschaft                         
#>  5 115   Tierpflege                              
#>  6 116   Weinbau                                 
#>  7 117   Forst-,Jagdwirtschaft, Landschaftspflege
#>  8 121   Gartenbau                               
#>  9 122   Floristik                               
#> 10 211   Berg-, Tagebau und Sprengtechnik        
#> # … with 135 more rows

Citation

To cite package ‘badata’ in publications use:

Nguyen HL (2023). {badata}: Regional Job Market Data from the German Federal Employment Agency (Bundesagentur für Arbeit – BA). https://doi.org/10.5281/zenodo.7636115, https://github.com/long39ng/badata

A BibTeX entry for LaTeX users is

@Manual{,
  title = {{badata}: Regional Job Market Data from the German Federal Employment Agency
(Bundesagentur für Arbeit -- BA)},
  doi = {10.5281/zenodo.7636115},
  author = {H. Long Nguyen},
  year = {2023},
  version = {0.1.0},
  url = {https://github.com/long39ng/badata},
}

Disclaimer

The variable names were translated from German into English, the data itself remains unchanged and is subject to the copyright of the German Federal Employment Agency (BA). © Statistik der Bundesagentur für Arbeit

This package is in no way officially related to or endorsed by BA.