dpaysan
PhD Student @ ETH Zurich and Paul Scherrer Institute | Machine Learning and Computational Biology
ETH ZurichZurich
Pinned Repositories
AdamW-pytorch
Implementation and experiments for AdamW on Pytorch
causaldag
Python package for the creation, manipulation, and learning of Causal DAGs
chuv_collaboration
cross-modal-autoencoders
dpaysan
Config files for my GitHub profile.
germinal_center
Python code for the chromatin state analyses of the paper
hsmmlearn
A library for hidden semi-Markov models with explicit durations
image2reg
Code for the paper "Image2Reg: Linking Chromatin Images to Gene Regulation using Genetic Perturbation Screens"
imageaeot
pyhsmm
Customized version of the original software package to be used for surgical activity recognition using HSMMs.
dpaysan's Repositories
dpaysan/hsmmlearn
A library for hidden semi-Markov models with explicit durations
dpaysan/AdamW-pytorch
Implementation and experiments for AdamW on Pytorch
dpaysan/causaldag
Python package for the creation, manipulation, and learning of Causal DAGs
dpaysan/chuv_collaboration
dpaysan/cross-modal-autoencoders
dpaysan/dpaysan
Config files for my GitHub profile.
dpaysan/germinal_center
Python code for the chromatin state analyses of the paper
dpaysan/image2reg
Code for the paper "Image2Reg: Linking Chromatin Images to Gene Regulation using Genetic Perturbation Screens"
dpaysan/imageaeot
dpaysan/pyhsmm
Customized version of the original software package to be used for surgical activity recognition using HSMMs.
dpaysan/Intro2ML
Code of the projects of the Introduction to Machine Learning course 2019 at ETHZ.
dpaysan/jump_datasets
Images and other data from the JUMP Cell Painting Consortium
dpaysan/material
Material for course STA426 at UZH, Fall Semester 2020
dpaysan/NMCO-Image-Features
Nuclear Morphology and Chromatin Organization Features
dpaysan/node2vec_stability
dpaysan/pybasicbayes
Custom version of the pybasicbayes package edited to be used in the context of surgical activity recognition using HSMMs.
dpaysan/pySCENIC
pySCENIC is a lightning-fast python implementation of the SCENIC pipeline (Single-Cell rEgulatory Network Inference and Clustering) which enables biologists to infer transcription factors, gene regulatory networks and cell types from single-cell RNA-seq data.
dpaysan/scvae
Deep learning for single-cell transcript counts
dpaysan/SimpleITK-Notebooks
Jupyter notebooks for learning how to use SimpleITK
dpaysan/ST-Net
Deep learning on histopathology images.
dpaysan/sta426dp
Repository for the course work of the module STA426DP
dpaysan/unet-nuclei
Segmentation of fluorescently labelled nuclei using a pre-trained Unet
dpaysan/unet_nuclei_segmentation