This repository is an official PyTorch implementation of the paper "Multi-scale Residual Network for Image Super-Resolution".
Paper can be download from MSRN
All test datasets (Preprocessed HR images) can be downloaded from here.
All original test datasets (HR images) can be downloaded from here.
Our MSRN was trained and tested on the Y channel directly. However, more and more SR models are trained on RGB channels. For a fair comparison, we retrained MSRN based on EDSR code. We release the new codes and results on this project.
The old codes are moved into the OLD/ folder. The new codes are stored on MSRN/ folder.
The retraining model provided previously uses the DIV2K (1-895).
We corrected this error and provided retrained models (DIV2K 1-800) and results.
We also provided x8 results now!
Notice that, we only use 800 images (DIV2K 1-800) for training and use the latest weight file for the test.
All pretrained model can be downloaded from ECCV2018_MSRN_premodel or can be found "Test/model".
All reconstructed images can be downloaded from ECCV2018_MSRN_SR_images (Including MSRN and MSRN+).
At the same time, we also noticed the defect of MSRN, the improved version of MSRN will be released soon.
- Python 3.6
- PyTorch >= 0.4.0
- numpy
- skimage
- imageio
- matplotlib
- tqdm
For more informaiton, please refer to EDSR and RCAN.
Train/ : all train files
Test/ : all test files
demo.sh : all running instructions
We used DIV2K dataset to train our model. Please download it from here or SNU_CVLab.
Extract the file and put it into the Train/dataset.
Using --ext sep_reset argument on your first running.
You can skip the decoding part and use saved binaries with --ext sep argument in second time.
If you have enough memory, using --ext bin.
cd Train/
# MSRN x2 LR: 48 * 48 HR: 96 * 96
python main.py --template MSRN --save MSRN_X2 --scale 2 --reset --save_results --patch_size 96 --ext sep_reset
# MSRN x3 LR: 48 * 48 HR: 144 * 144
python main.py --template MSRN --save MSRN_X3 --scale 3 --reset --save_results --patch_size 144 --ext sep_reset
# MSRN x4 LR: 48 * 48 HR: 192 * 192
python main.py --template MSRN --save MSRN_X4 --scale 4 --reset --save_results --patch_size 192 --ext sep_reset
Using pre-trained model for training, all test datasets must be pretreatment by ''Test/Prepare_TestData_HR_LR.m" and all pre-trained model should be put into "Test/model/".
#MSRN x2
python main.py --data_test MyImage --scale 2 --model MSRN --pre_train ../model/MSRN_x2.pt --test_only --save_results --chop --save "MSRN" --testpath ../LR/LRBI --testset Set5
#MSRN+ x2
python main.py --data_test MyImage --scale 2 --model MSRN --pre_train ../model/MSRN_x2.pt --test_only --save_results --chop --self_ensemble --save "MSRN_plus" --testpath ../LR/LRBI --testset Set5
#MSRN x3
python main.py --data_test MyImage --scale 3 --model MSRN --pre_train ../model/MSRN_x3.pt --test_only --save_results --chop --save "MSRN" --testpath ../LR/LRBI --testset Set5
#MSRN+ x3
python main.py --data_test MyImage --scale 3 --model MSRN --pre_train ../model/MSRN_x3.pt --test_only --save_results --chop --self_ensemble --save "MSRN_plus" --testpath ../LR/LRBI --testset Set5
#MSRN x4
python main.py --data_test MyImage --scale 4 --model MSRN --pre_train ../model/MSRN_x4.pt --test_only --save_results --chop --save "MSRN" --testpath ../LR/LRBI --testset Set5
#MSRN+ x4
python main.py --data_test MyImage --scale 4 --model MSRN --pre_train ../model/MSRN_x4.pt --test_only --save_results --chop --self_ensemble --save "MSRN_plus" --testpath ../LR/LRBI --testset Set5
We also introduce self-ensemble strategy to improve our MSRN and denote the self-ensembled version as MSRN+.
More running instructions can be found in demo.sh.
Our MSRN is trained on RGB, but as in previous work, we only reported PSNR/SSIM on the Y channel.
We use the file ''Test/Evaluate_PSNR_SSIM'' for test.
Model | Scale | Set5 | Set14 | B100 | Urban100 | Manga109 |
---|---|---|---|---|---|---|
old (paper) | x2 | 38.08/0.9605 | 33.74/0.9170 | 32.23/0.9013 | 32.22/0.9326 | 38.82/0.9868 |
MSRN | x2 | 38.07/0.9608 | 33.68/0.9184 | 32.22/0.9002 | 32.32/0.9304 | 38.64/0.9771 |
MSRN+ | x2 | 38.16/0.9611 | 33.82/0.9196 | 32.28/0.9080 | 32.47/0.9316 | 38.87/0.9777 |
old (paper) | x3 | 34.38/0.9262 | 30.34/0.8395 | 29.08/0.8041 | 28.08/0.8554 | 33.44/0.9427 |
MSRN | x3 | 34.48/0.9276 | 30.40/0.8436 | 29.13/0.8061 | 28.31/0.8560 | 33.56/0.9451 |
MSRN+ | x3 | 34.59/0.9285 | 30.51/0.8454 | 29.20/0.8073 | 28.49/0.8588 | 33.91/0.9470 |
old (paper) | x4 | 32.07/0.8903 | 28.60/0.7751 | 27.52/0.7273 | 26.04/0.7896 | 30.17/0.9034 |
MSRN | x4 | 32.25/0.8958 | 28.63/0.7833 | 27.61/0.7377 | 26.22/0.7905 | 30.57/0.9103 |
MSRN+ | x4 | 32.41/0.8975 | 28.76/0.7859 | 27.68/0.7394 | 26.39/0.7946 | 30.92/0.9136 |
old (paper) | x8 | 26.59/0.7254 | 24.88/0.5961 | 24.70/0.5410 | 22.37/0.5977 | 24.28/0.7517 |
MSRN | x8 | 26.95/0.7728 | 24.87/0.6380 | 24.77/0.5954 | 22.35/0.6124 | 24.40/0.7729 |
MSRN+ | x8 | 27.07/0.7784 | 25.03/0.6422 | 24.83/0.5974 | 22.51/0.6182 | 24.62/0.7795 |
MSRN x2 on DIV2K training datasets (1-800) and test datasets (896-900).
MSRN x3 on DIV2K training datasets (1-800) and test datasets (896-900).
MSRN x4 on DIV2K training datasets (1-800) and test datasets (896-900).
@InProceedings{Li_2018_ECCV,
author = {Li, Juncheng and Fang, Faming and Mei, Kangfu and Zhang, Guixu},
title = {Multi-scale Residual Network for Image Super-Resolution},
booktitle = {The European Conference on Computer Vision (ECCV)},
month = {September},
year = {2018}
}