The Quantum Exact Simulation Toolkit is a high performance simulator of universal quantum circuits, state-vectors and density matrices. QuEST is written in C, hybridises OpenMP and MPI, and can run on a GPU. Needing only compilation, QuEST is easy to run both on laptops and supercomputers (in both C and C++), where it can take advantage of multicore, GPU-accelerated and networked machines to quickly simulate circuits on many qubits.
This library provides a safe wrapper around QuEST with an idiomatic Rust API.
To use quest-rs in your Rust codebase, first run:
cargo add quest-rs
or add quest-rs
manually to your Cargo.toml
.
The API is simple:
use quest_rs::{QuestEnv, QuReg};
let env = QuestEnv::new();
let mut qubits = QuReg::new(2, &env);
qubits.init_plus_state().hadamard(0).controlled_not(0, 1);
println!(
"Probability amplitude of |11> *before* measurement is: {}",
qubits.probability_amplitude(0b11)
);
qubits.measure(1);
println!(
"Probability amplitude of |11> *after* measurement is: {}",
qubits.probability_amplitude(0b11)
);
The fluent API makes more complicated circuits easy to create:
use quest_rs::{Complex, ComplexMatrix2, ComplexMatrixN, QReal, QuReg, QuestEnv, Vector};
let env = QuestEnv::new();
let mut qubits = QuReg::new(3, &env);
qubits.init_zero_state();
println!("Out environment is:");
qubits.report_params();
env.report();
// Set up the circuitry
let unitary_alpha = Complex::new(0.5, 0.5);
let unitary_beta = Complex::new(0.5, -0.5);
let unitary_matrix = ComplexMatrix2 {
real: [[0.5, 0.5], [0.5, 0.5]],
imag: [[0.5, -0.5], [-0.5, 0.5]],
};
let mut toffoli_gate = ComplexMatrixN::new(3);
for i in 0..6 {
toffoli_gate.set_real(i, i, 1.0);
}
toffoli_gate.set_real(6, 7, 1.0);
toffoli_gate.set_real(7, 6, 1.0);
qubits
.hadamard(0)
.controlled_not(0, 1)
.rotate_y(2, 0.1)
.multi_controlled_phase_flip(vec![0, 1, 2])
.unitary(0, unitary_matrix)
.compact_unitary(1, unitary_alpha, unitary_beta)
.rotate_around_axis(2, (3.14 / 2.0) as QReal, Vector::new(1.0, 0.0, 0.0))
.controlled_compact_unitary(0, 1, unitary_alpha, unitary_beta)
.multi_controlled_unitary(vec![0, 1], 2, unitary_matrix)
.multi_qubit_unitary(vec![0, 1, 2], toffoli_gate);
// Study the output
println!("Circuit output:");
println!("---------------");
println!("Probability amplitude of |111> is: {}", qubits.probability_amplitude(0b111));
println!(
"Probability of qubit 2 being in state 1: {}",
qubits.calculate_probability_of_outcome(2, 1)
);
println!("Qubit 0 was measured in state: {}", qubits.measure(0));
let (outcome, outcome_probability) = qubits.measure_with_stats(2);
println!(
"Qubit 2 collapsed to {} with probability {}",
outcome, outcome_probability
);
For a starter template to get going with an executable project that uses this wrapper, see: https://github.com/drewsilcock/quest-rs-template or press this button:
The C QuEST library has several compile-option flags which should be supported using cargo features. These are:
- what precision to operate in (single, double or quad)
- whether to enable OpenMP, MPI, OpenMP+MPI or GPU
The documentation should also be expanded to include all the relevant info from the QuEST documentation.