- This repository is a modification of original repository for Graph Transformer Networks(NeurIPS'19).
- This repository is used for lab freshman and undergraduate students seminar in MLILAB.
pip install -r requirements.txt
-
Download data.zip dataset from this link and unzip it to the uppermost directory of this repository.
-
Make sure that the data are located like below.
Graph-Transformer-Network
├── main.py
├── model.py
├── gcn.py
├── utils.py
├── data_preprocessing.ipynb
├── ACM.mat
├── data
├── ACM
├── edges.pkl
├── labels.pkl
└── node_features.pkl
├── DBLP
├── edges.pkl
├── labels.pkl
└── node_features.pkl
└── IMDB
├── edges.pkl
├── labels.pkl
└── node_features.pkl
├── imgs
└── GTN.png
├── requirements.txt
└── README.md
TODO 2 : Run main.py with DBLP and ACM dataset using the commands and report the training curves and macro F1 scores.
- DBLP
$ python main.py --dataset DBLP --num_layers 3
- ACM
$ python main.py --dataset ACM --num_layers 2 --adaptive_lr true
- You might refer to data_preprocessing.ipynb to see which edge is which index.