/MaxPool2D-NumPy

2D Max Pooling from NumPy

Primary LanguagePython

MaxPool2D-NumPy

This repository provides an implementation of a MaxPool2D (2D MaxPooling layer) from scratch using NumPy.

Features

  • 2D maxpooling layer implementation
  • Support for both single-channel and multi-channel images/feature maps
  • Customizable filter size, stride, and padding
  • Efficient computation using NumPy

Dependencies and Installation

  • Python 3.12.3

  • Install requirements: pip install -r requirements.txt

Implementation

def maxpool2d(
    image: np.ndarray,
    kernel_size,
    stride=None,
    padding=0,
) -> np.ndarray:
    """
    Perform a 2D MaxPool operation

    Args:
        image (np.ndarray): Input image
        kernel_size (int or tuple[int, int]): Size of the maxpooling window
        stride (int, optional): Stride value for the maxpooling operation. Default value is kernel_size.
        padding (int, optional): Padding value for the input image. Default is 0.

    Returns:
        np.ndarray: Resulting output of the maxpooling operation.


    Raises:
        TypeError: If `image` is not of type `numpy.ndarray`.
        ValueError: If `kernel_size` is invalid.
    """

Understanding 2D Maxpooling

Terminology

Terms Explainations Variables
input An image of size (height, width, channels) represents a single instance of an image. It can be thought of as a collection of channels 2D matrices, each of size (height, width), stacked together. in_channel=channels
padding Technique of adding extra border elements to the input data before applying a convolution operation. It helps preserve spatial dimensions and prevents the output from being smaller than the input. padding
kernel TODO kernel_size, stride
maxpool TODO
ouput TODO out_channels

Output Sizing Calculation

output_height = (input_height - kernel_height + 2 * padding) / stride + 1
output_width = (input_width - kernel_width + 2 * padding) / stride + 1

Results of 2D MaxPooling

2 maxpool2d layers 3 maxpool2d layers
kernel_size = 2, stride = 2, padding = 0 kernel_size = 2, stride = 2, padding = 1
low high

More on this topic