/Python-data-science-intro-course

Resource materials of the data science course using R and Python that I facilitated at Besant technologies

Primary LanguageHTMLMIT LicenseMIT

Introductoty Data Science Course using R and Python

Resource materials of the data science course using R and Python that I facilitated at Besant technologies

Repo contents

  1. Introduction to Python and R programming languages
  • Data Science - Python.ipynb
  • R_basic.Rmd
  1. Exploratory data analysis : Covers techniques such as Univariate and bivariate analysis, Missing value analysis, Outlier detection analysis, Percentile based outlier removal, correlation matrix etc.
  • EDA - Python .ipynb
  1. Classication models: Covers K-nearest neighbors, SVM, RF, LR, and Xgboost techniques
  • model-KNN.ipynb
  • modle-SVM.ipynb
  • model-random-forest.ipynb
  • model-xgboost.ipynb
  • model-logistic-regression.ipynb
  1. Regression techniques: Covers linear, lasso, ridge, polynomial and elasticnet regression techniques
  • model-linear-regression.ipynb
  • Regression_tech-Lasso_ridge_Elasticnet.ipynb
  1. Clustering techniques: Covers K-means, hierarchical clustering algorithms
  • model-clustering.ipynb