This repository contains the code for reproducing the experimental results of attacking mnist, cifar10, tiny-imagenet models, of our submission: Query-efficient Meta Aattack to Deep Neural Networks (openreview). The paper can be cited as follows:
@inproceedings{
Du2020Query-efficient,
title={Query-efficient Meta Attack to Deep Neural Networks},
author={Jiawei Du and Hu Zhang and Joey Tianyi Zhou and Yi Yang and Jiashi Feng},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://openreview.net/forum?id=Skxd6gSYDS}
}
- Pytorch (
torch
,torchvision
) packages
cd gen_grad/cifar_gen_grad_for_meta
python cifar_main.py
cd meta_training/cifar_meta_training
python cifar_train.py
The results can be reproduced (with the default hyperparameters) with the following command:
cd meta_attack/meta_attack_cifar
python test_all.py
The models we used for meta attacker training and final attack can be found here.