/target_temp_detection

Primary LanguageJupyter NotebookMIT LicenseMIT

Detecting temperature targets


Neural networks are trained on CMIP6 data to detect the remaining number of years until specific temperature targets are reached.

Tensorflow Code


This code was written in python 3.9.7, tensorflow 2.7.0, tensorflow-probability 0.15.0 and numpy 1.22.2.

Python Environment

The following python environment was used to implement this code.

conda create --name env-noah python=3.9
conda activate env-noah
pip install tensorflow==2.7.0
pip install tensorflow-probability==0.15.0
pip install --upgrade numpy scipy pandas statsmodels matplotlib seaborn palettable progressbar2 tabulate icecream flake8 keras-tuner sklearn jupyterlab black isort jupyterlab_code_formatter
pip install -U scikit-learn
pip install silence-tensorflow tqdm
conda install -c conda-forge cmocean cartopy
conda install -c conda-forge xarray dask netCDF4 bottleneck
conda install -c conda-forge nc-time-axis

Credits


This work is a collaborative effort betweenDr. Noah Diffenbaugh and Dr. Elizabeth A. Barnes.

References

[1] None.

License

This project is licensed under an MIT license.

MIT © Elizabeth A. Barnes