Health_status_prediction

This is a PyTorch implementation of the paper: Real-time personalized health status prediction of lithium-ion batteries using deep transfer learning. Ye Yuan, Guijun Ma, Songpei Xu imamge

Environment Setup

  1. System
  • OS: Ubuntu 18.04
  • GPU (one card):
    • NVIDIA GeForce RTX 3090 (24 GB)
    • CUDA: 11.1
    • Driver: 470.57.02
  1. Python version
    python = 3.8.8

Requirements

This model is implemented using Python3 with dependencies specified in requirements.txt

# Install pytorch, see the official website for details: https://pytorch.org/
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html

# Install other dependencies
pip install -r requirements.txt

Data Preparation

Data Download
Yuan, Ye; Ma, Guijun; Xu, Songpei (2022), “The Dataset for: Real-time personalized health status prediction of lithium-ion batteries using deep transfer learning ”, Mendeley Data, V2, doi: 10.17632/nsc7hnsg4s.2

Code Introduction

Contact

If you have any questions, please contact songpeix@hust.edu.cn