The goal of score4cast is to provide a convenient interface to score ecological forecasts that conform the EFI standard. score4cast emphasizes the use of strictly proper scores (see scoringRules R package or Gneiting & Raferty’s landmark 2007 paper) for probablistic forecasts. The EFI format provides a simple but flexible way to express both ensemble and parametric forecasts in a standard tabular layout.
You can install the development version of score4cast from GitHub with:
# install.packages("devtools")
devtools::install_github("eco4cast/score4cast")
A forecast (in standardized format) is scored against a target (in standardized format):
library(score4cast)
ex_data <- system.file("extdata/standard-format-examples.R", package="score4cast")
source(ex_data)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
#>
#> Attaching package: 'lubridate'
#> The following objects are masked from 'package:base':
#>
#> date, intersect, setdiff, union
scores <- score(ex_forecast, ex_target)
scores
#> # A tibble: 10 × 17
#> model_id reference_datetime site_id datetime family variable
#> <chr> <dttm> <chr> <dttm> <chr> <chr>
#> 1 ensemble_team 2022-02-01 00:00:00 BARC 2022-02-02 00:00:00 sample oxygen
#> 2 ensemble_team 2022-02-01 00:00:00 BARC 2022-02-02 00:00:00 sample tempera…
#> 3 gauss_team 2022-02-01 00:00:00 BARC 2022-02-02 00:00:00 normal oxygen
#> 4 gauss_team 2022-02-01 00:00:00 BARC 2022-02-02 00:00:00 normal tempera…
#> 5 gauss_team 2022-02-01 00:00:00 BARC 2022-02-03 00:00:00 normal oxygen
#> 6 gauss_team 2022-02-01 00:00:00 BARC 2022-02-03 00:00:00 normal tempera…
#> 7 gauss_team 2022-02-01 00:00:00 ORNL 2022-02-02 00:00:00 normal oxygen
#> 8 gauss_team 2022-02-01 00:00:00 ORNL 2022-02-02 00:00:00 normal tempera…
#> 9 gauss_team 2022-02-01 00:00:00 ORNL 2022-02-03 00:00:00 normal oxygen
#> 10 gauss_team 2022-02-01 00:00:00 ORNL 2022-02-03 00:00:00 normal tempera…
#> # ℹ 11 more variables: observation <dbl>, crps <dbl>, logs <dbl>, mean <dbl>,
#> # median <dbl>, sd <dbl>, quantile97.5 <dbl>, quantile02.5 <dbl>,
#> # quantile90 <dbl>, quantile10 <dbl>, horizon <drtn>
library(tidyverse)
forecast <- tibble(datetime = as_date("2023-01-02"),
site_id = "fcre",
depth = c(1,2),
model_id = "test",
reference_datetime = as_date("2023-01-02"),
variable = "temp",
family = "bernoulli",
parameter = "prob",
prediction = c(0.3, 0.1))
target <- tibble(datetime = as_date("2023-01-02"),
site_id = "fcre",
depth = c(1,2),
variable = "temp",
observation = c(1,0))
crps_logs_score(forecast,target, extra_groups = "depth")
#> # A tibble: 2 × 17
#> model_id reference_datetime site_id datetime family variable depth
#> <chr> <date> <chr> <date> <chr> <chr> <dbl>
#> 1 test 2023-01-02 fcre 2023-01-02 bernoulli temp 1
#> 2 test 2023-01-02 fcre 2023-01-02 bernoulli temp 2
#> # ℹ 10 more variables: observation <dbl>, crps <dbl>, logs <dbl>, mean <dbl>,
#> # median <dbl>, sd <dbl>, quantile97.5 <dbl>, quantile02.5 <dbl>,
#> # quantile90 <dbl>, quantile10 <dbl>