https://arxiv.org/pdf/1512.02325.pdf
https://arxiv.org/pdf/1801.04381.pdf
For a quick dive into the project, run
https://github.com/eddiebarry/SingleShotDetector/blob/master/SSDLite.ipynb
in colab
-
weights
-
best_weight.hdf5
-
-
test_results
-
model_output
-
out_img
-
inp_img
-
-
CONSTANTS.py
-
dataset_sequence.py
-
dataset_test.py
-
models.py
-
visualiser.py
-
loss.py
This file contains the implementation of 2 losses. CustomSSDLoss which is the loss function presented in the SSD paper, and CustomSSDLossCrossEntropy which uses cross entropy instead of softmax loss for class prediction.
-
train.py
-
test.py
-
Finetune.py
-
img_utils.py
-
model_utils.py
-
utils.py
tensorflow=2.2.0
opencv-python
numpy
matplotlib
python dataset_test.py
A visualisation of generated images are saved in
'./test_results/vis_all_label_img.png
'./test_results/vis_label_img.png'
python train.py
At the start of each epoch, model predictions are visualised and saved in
'./test_results/out_img/'
by default
python test.py
All generated images are stored in
'./test_results/model_outputs/'