/qdrant-client

Python client for Qdrant vector search engine

Primary LanguagePythonApache License 2.0Apache-2.0

Qdrant

Python Client library for the Qdrant vector search engine.

PyPI version OpenAPI Docs Apache 2.0 License Discord Roadmap 2023

Python Qdrant Client

Client library and SDK for the Qdrant vector search engine.

Library contains type definitions for all Qdrant API and allows to make both Sync and Async requests.

Client allows calls for all Qdrant API methods directly. It also provides some additional helper methods for frequently required operations, e.g. initial collection uploading.

See QuickStart for more details!

Installation

pip install qdrant-client

Features

  • Type hints for all API methods
  • Local mode - use same API without running server
  • REST and gRPC support
  • Minimal dependencies

Local mode

Qdrant

Python client allows you to run same code in local mode without running Qdrant server.

Simply initialize client like this:

from qdrant_client import QdrantClient

client = QdrantClient(":memory:")
# or
client = QdrantClient(path="path/to/db")  # Persists changes to disk

Local mode is useful for development, prototyping and testing.

  • You can use it to run tests in your CI/CD pipeline.
  • Run it in Colab or Jupyter Notebook, no extra dependencies required. See an example
  • When you need to scale, simply switch to server mode.

How it works?

We just implemented Qdrant API in pure Python. We covered it with tests extensively to be sure it works the same as the server version.

Connect to Qdrant server

To connect to Qdrant server, simply specify host and port:

from qdrant_client import QdrantClient

client = QdrantClient(host="localhost", port=6333)
# or
client = QdrantClient(url="http://localhost:6333")

You can run Qdrant server locally with docker:

docker run -p 6333:6333 qdrant/qdrant:latest

See more launch options in Qdrant repository.

Connect to Qdrant cloud

You can register and use Qdrant Cloud to get a free tier account with 1GB RAM.

Once you have your cluster and API key, you can connect to it like this:

from qdrant_client import QdrantClient

qdrant_client = QdrantClient(
    url="https://xxxxxx-xxxxx-xxxxx-xxxx-xxxxxxxxx.us-east.aws.cloud.qdrant.io:6333",
    api_key="<your-api-key>",
)

Examples

Create a new collection

from qdrant_client.models import Distance, VectorParams

client.recreate_collection(
    collection_name="my_collection",
    vectors_config=VectorParams(size=100, distance=Distance.COSINE),
)

Insert vectors into a collection

import numpy as np
from qdrant_client.models import PointStruct

vectors = np.random.rand(100, 100)
client.upsert(
    collection_name="my_collection",
    points=[
        PointStruct(
            id=idx,
            vector=vector.tolist(),
            payload={"color": "red", "rand_number": idx % 10}
        )
        for idx, vector in enumerate(vectors)
    ]
)

Search for similar vectors

query_vector = np.random.rand(100)
hits = client.search(
    collection_name="my_collection",
    query_vector=query_vector,
    limit=5  # Return 5 closest points
)

Search for similar vectors with filtering condition

from qdrant_client.models import Filter, FieldCondition, Range

hits = client.search(
    collection_name="my_collection",
    query_vector=query_vector,
    query_filter=Filter(
        must=[  # These conditions are required for search results
            FieldCondition(
                key='rand_number',  # Condition based on values of `rand_number` field.
                range=Range(
                    gte=3  # Select only those results where `rand_number` >= 3
                )
            )
        ]
    ),
    limit=5  # Return 5 closest points
)

See more examples in our Documentation!

gRPC

To enable (typically, much faster) collection uploading with gRPC, use the following initialization:

from qdrant_client import QdrantClient

client = QdrantClient(host="localhost", grpc_port=6334, prefer_grpc=True)

Async client

Async methods are available in raw autogenerated clients. Usually, you don't need to use them directly, but if you need extra performance, you can access them directly.

Async gRPC

Example of using raw async gRPC client:

from qdrant_client import QdrantClient, grpc

client = QdrantClient(prefer_grpc=True, timeout=3.0)

grpc_collections = client.async_grpc_collections

res = await grpc_collections.List(grpc.ListCollectionsRequest(), timeout=1.0)

More examples can be found here.

Development

This project uses git hooks to run code formatters.

Install pre-commit with pip3 install pre-commit and set up hooks with pre-commit install.

pre-commit requires python>=3.8