🎿Java基础 | 📝NIO | 📖并发 | 🎸JVM | 💵分布式 | 💾Zookeeper | 👊RPC | 🎨Netty | 💻Linux |
---|---|---|---|---|---|---|---|---|
Java基础 | NIO | 并发容器 | JVM | 分布式 | zookeeper | RPC | Netty | Linux |
Hadoop | Hive | Spark | Flink | HBase | Kafka | Zookeeper | Flume | Sqoop | Azkaban |
Flink实战进阶 | Spark实战进阶 | Kafka实战进阶 |
TODO
- 大数据成神之路-Java高级特性增强(多线程)
- 大数据成神之路-Java高级特性增强(Synchronized关键字)
- 大数据成神之路-Java高级特性增强(volatile关键字)
- 大数据成神之路-Java高级特性增强(锁)
- 大数据成神之路-Java高级特性增强(ArrayList/Vector)
- 大数据成神之路-Java高级特性增强(LinkedList)
- 大数据成神之路-Java高级特性增强(HashMap)
- 大数据成神之路-Java高级特性增强(HashSet)
- 大数据成神之路-Java高级特性增强(LinkedHashMap)
- 大数据成神之路-Java高级特性增强-NIO大纲
- NIO概览
- Java NIO之Buffer(缓冲区)
- Java NIO之Channel(通道)
- ava NIO之Selector(选择器)
- Java NIO之拥抱Path和Files
- 大数据成神之路-Java高级特性增强(并发容器大纲)
- 大数据成神之路-Java高级特性增强(LinkedBlockingQueue)
- 大数据成神之路-Java高级特性增强(LinkedBlockingDeque)
- 大数据成神之路-Java高级特性增强(CopyOnWriteArraySet)
- 大数据成神之路-Java高级特性增强(CopyOnWriteArrayList)
- 大数据成神之路-Java高级特性增强(ConcurrentSkipListSet)
- 大数据成神之路-Java高级特性增强(ConcurrentSkipListMap)
- 大数据成神之路-Java高级特性增强(ConcurrentLinkedQueue)
- 大数据成神之路-Java高级特性增强(ConcurrentHashMap)
- 大数据成神之路-Java高级特性增强(ArrayBlockingQueue)
- 分布式系统的一些基本概念
- 分布式系统理论基础一: 一致性、2PC和3PC
- 分布式系统理论基础二-CAP
- 分布式系统理论基础三-时间、时钟和事件顺序
- 分布式系统理论进阶 - Paxos
- 分布式系统理论进阶 - Raft、Zab
- 分布式系统理论进阶:选举、多数派和租约
- 分布式锁的解决方案
- 分布式锁的解决方案(二)
- 分布式事务的解决方案
- 分布式ID生成器解决方案
- 关于Netty我们都需要知道什么
- Netty源码解析-概述篇
- Netty源码解析1-Buffer
- Netty源码解析2-Reactor
- Netty源码解析3-Pipeline
- Netty源码解析4-Handler综述
- Netty源码解析5-ChannelHandler
- Netty源码解析6-ChannelHandler实例之LoggingHandler
- Netty源码解析7-ChannelHandler实例之TimeoutHandler
- Netty源码解析8-ChannelHandler实例之CodecHandler
- Netty源码解析9-ChannelHandler实例之MessageToByteEncoder
本部分引用了Bigdata-Notes的文章,作者是heibaiying,大佬写的文章非常好,欢迎大家关注他的博客。 我个人会持续补充更有深度和实战性的文章~
- 分布式文件存储系统 —— HDFS
- 分布式计算框架 —— MapReduce
- 集群资源管理器 —— YARN
- Hadoop 单机伪集群环境搭建
- Hadoop 集群环境搭建
- HDFS 常用 Shell 命令
- HDFS Java API 的使用
- 基于 Zookeeper 搭建 Hadoop 高可用集群
- Hadoop级简入门
- MapReduce编程模型和计算框架架构原理
- Hive 简介及核心概念
- Linux 环境下 Hive 的安装部署
- Hive CLI 和 Beeline 命令行的基本使用
- Hive 常用 DDL 操作
- Hive 分区表和分桶表
- Hive 视图和索引
- Hive常用 DML 操作
- Hive 数据查询详解
Spark Core :
- Spark 简介
- Spark 开发环境搭建
- 弹性式数据集 RDD
- RDD 常用算子详解
- Spark 运行模式与作业提交
- Spark 累加器与广播变量
- 基于 Zookeeper 搭建 Spark 高可用集群
Spark SQL :
Spark Streaming :
- Flink 核心概念综述
- Flink 开发环境搭建
- Flink Data Source
- Flink Data Transformation
- Flink Data Sink
- Flink 窗口模型
- Flink 状态管理与检查点机制
- Flink Standalone 集群部署
- Flink从入门到放弃(入门篇1)-Flink是什么
- Flink从入门到放弃(入门篇2)-本地环境搭建&构建第一个Flink应用
- Flink从入门到放弃(入门篇3)-DataSetAPI
- Flink从入门到放弃(入门篇4)-DataStreamAPI
- Flink集群部署
- Flink重启策略
- Flink的分布式缓存
- Flink中的窗口
- Flink中的Time
- Flink集群搭建的HA
- Flink中的时间戳和水印
- Flink广播变量
- Flink-Kafka-Connector
- Flink-Table-&-SQL实战
- 15-Flink实战项目之实时热销排行
- 16-Flink-Redis-Sink
- 17-Flink消费Kafka写入Mysql
- Hbase 简介
- HBase 系统架构及数据结构
- HBase 基本环境搭建 (Standalone /pseudo-distributed mode)
- HBase 集群环境搭建
- HBase 常用 Shell 命令
- HBase Java API
- Hbase 过滤器详解
- HBase 协处理器详解
- HBase 容灾与备份
- HBase的 SQL 中间层 —— Phoenix
- Spring/Spring Boot 整合 Mybatis + Phoenix
Kafka基本原理 :
分布式消息队列Kafka原理及与流式计算的集成 :
- Apache-Kafka简介
- Apache-Kafka核心概念
- Apache-Kafka安装和使用
- Apache-Kafka编程实战
- Apache-Kafka核心组件和流程(副本管理器)
- Apache-Kafka核心组件和流程-协调器
- Apache-Kafka核心组件和流程-控制器
- Apache-Kafka核心组件和流程-日志管理器
- Zookeeper 简介及核心概念
- Zookeeper 单机环境和集群环境搭建
- Zookeeper 常用 Shell 命令
- Zookeeper Java 客户端 —— Apache Curator
- Zookeeper ACL 权限控制
- 菜鸟供应链实时技术架构演进
- 趣头条实战-基于Flink+ClickHouse构建实时数据平台
- ApacheFlink新场景-OLAP引擎
- 说说Flink DataStream的八种物理分区逻辑
- State Processor API:如何读取,写入和修改 Flink 应用程序的状态
- Flink滑动窗口原理与细粒度滑动窗口的性能问题
- 基于Flink快速开发实时TopN
- 使用 Apache Flink 开发实时 ETL
- Flink Source/Sink探究与实践:RocketMQ数据写入HBase
- Spark/Flink广播实现作业配置动态更新
- Flink全链路延迟的测量方式
- Flink原理-Flink中的数据抽象及数据交换过程
- Flink SQL Window源码全解析
- Flink DataStream维度表Join的简单方案
- Apache Flink的内存管理
- Flink1.9整合Kafka实战
- Apache Flink在小米的发展和应用
- 基于Kafka+Flink+Redis的电商大屏实时计算案例
- Flink实战-壳找房基于Flink的实时平台建设
- 用Flink取代Spark Streaming!知乎实时数仓架构演进
- Flink实时数仓-美团点评实战
- 来将可留姓名?Flink最强学习资源合集!
- 数据不撒谎,Flink-Kafka性能压测全记录!
- 菜鸟在物流场景中基于Flink的流计算实践
- 基于Flink构建实时数据仓库
- Flink/Spark 如何实现动态更新作业配置
本系列的大纲会根据实际情况进行调整,欢迎大家关注~
文档中参考引用了大量网络上的博客和文章,大部分给出了出处,有些没写,如果造成了侵权行为,请您联系我,立即删除~
关注公众号:每天定时推送Hadoop/Spark/Flink等最新的大数据干货技术文章,学习资料下载等
备注Github,感谢您~
备注来自GitHub加群,小助手会拉你进大数据讨论组,一起学习交流,期待你的到来~
- 以前这里只是几个txt文档
- 是我面试腾讯阿里美团等公司大数据开发工程师的过程中总结出来的大数据开发的必知必会的知识点~
但是,我发现,我有必要
总结一个大数据开发的进阶路线
我知道很多java后端开发同学厌倦CRUD了,但是又不知道大数据这个路线是啥样的~
这个是我的成长路线~
现在看起来
当初没有走错~
当然,数据开发有很多方向比如数据仓库,数据分析
我这里单纯面对数据应用层或者中间件方向,也是大数据方向个人成长比较好的一个方向(我自己认为的,你不同意就算了,哈哈)~
这个是我的成长路线
欢迎各种PR,格式修改也行,总之一切能让这个文档好起来的,都是欢迎的~
大数据成神之路 该系列文章将为希望从事大数据开发或者由后端转型为大数据开发的工程师们指出需要学习的知识点和路径,本系列文章同时致敬我曾经在网络上看到无数个Java和大数据系列文章,深受启发同时也收货很多。
本系列文章引用了很多或者二次总结了各位前辈的文章,每篇文章后面都给出了引用,本着不重复造轮子的原则,本人会对其中的一些错误进行订正,感谢各位前辈的付出~
本系列文章希望为那些还在数据开发方向迷茫的人领路,文章会持续更新
欢迎关注公众号‘大数据技术与架构’或者搜索import_bigdata关注~