/Pruned-MobileNet_v2

Apply the pruning strategy for MobileNet_v2

Primary LanguagePython

Pruned-MobileNet_v2

Apply the pruning strategy of Network Slimming for MobileNet_v2.

The Caffe implementation of the algorithm is available in link.

Results

The size of the input image is 224x224.

Comparisons of different prune ratios

Step Prune Ratio L1 value Parameters Top1 Accuracy Speed
0 0 0 9.8MB 93.24% 152.0ms
1 0 0.001 9.8MB 92.68% 152.0ms
2 0.3 0.001 7.2MB 91.84% -
3 0.3 + 0.7 * 0.3 = 0.51 0.001 5.4MB 91.26% -
4 0.51 + 0.49 * 0.2 = 0.608 0 4.6MB 92.13% 79.3ms
5 0.608 (merging BN) - 4.5MB 92.13% 58.0ms

Comparisons of speeds on different models

Model Speed on PC Speed on iPhone7p (using NCNN)
ResNet50 about 1000ms 277.8ms
MobileNet v2 152.0ms 41.4ms
Pruned MobileNet v2 (with BN) 79.3ms 18.1ms
Pruned MobileNet v2 (merging BN) 58.0ms 13.6ms
(about 5ms
when the input is resized into 96x96 )

Contact

If you have any problems, please feel free to contact me via eezywu@163.com.