git clone --recursive git@github.com:eggeek/K-CBS-Demos.git
;
cd K-CBS-Demos/ompl
;
- Follow the instruction in
K-CBS-Demos/ompl/Readme.md
to compile ompl
;
- Back to the top layer and run
make fast
to compile K-CBS-Demos
;
- Run experiments
- Create soft links for generated scenarios:
ln -s <large-mapf-scen> large-mapf-scen
ln -s <special-mapf-scen> special-mapf-scen
./json2scen.py all
: generate .scen
file based .json
./run_expr.py all
: run all scenarios in large-mapf-scen
and special-mapf-scen
- Visualize result:
./pathplot.py <scenfile> <resfile>
- Turn on/off high order dynamics:
// set the state propagation routine
// without high order dynamics
// si->setStatePropagator(myDemoPropagateFunction);
// using ODE solver for high order dynamics
auto odeSolver(
std::make_shared<oc::ODEBasicSolver<>>(si, &SecondOrderCarODE));
si->setStatePropagator(oc::ODESolver::getStatePropagator(
odeSolver, &SecondOrderCarODEPostIntegration));
- Turn on/off
systemmerger
: author's original systemmerger
causes a dangerous warning, you may want to turn-off it.
// set the system merger
// proposed system merger in author's experiments
// auto merger = std::make_shared<homogeneous2ndOrderCarSystemMerger>(
// ma_si, ma_pdef, robot_map, obsts, 10, starts, goals);
// empty system merger
auto merger = std::make_shared<myDemoSystemMerger>(ma_si, ma_pdef);
ma_si->setSystemMerger(merger);
- J. Kottinger, S. Almagor and M. Lahijanian, "Conflict-Based Search for Multi-Robot Motion Planning with Kinodynamic Constraints," 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022, pp. 13494-13499, doi: 10.1109/IROS47612.2022.9982018.
- Theurkauf, Anne, Kottinger, Justin, and Lahijanian, Morteza. "Chance-Constrained Multi-Robot Motion Planning under Gaussian Uncertainties." arXiv preprint arXiv:2303.11476 (2023).