🔗Partition function (statistical mechanics) - wikipedia page
🔗Thermodynamic beta - wikipedia page
🔗Two Level Systems and more
📘Einstein model
Second Law of Thermo
Quantum stuff
🔗 http://www.thomaswong.net/
🎲 https://www.thegamecrafter.com/games/qubit-touchdown
📖Introduction to Classical and Quantum Computing
Miscellaneous
🔗 https://longnow.org/
import numpy as np
# Define the sefirot
sefirot = ["Keter", "Chokhmah", "Binah", "Chesed", "Gevurah", "Tiferet", "Netzach", "Hod", "Yesod", "Malkuth"]
# Number of sefirot
n = len(sefirot)
# Assign self-energies using a Gaussian distribution
mean = 100
std_dev = 20
self_energies = np.random.normal(mean, std_dev, n)
# Define a hypothetical interaction energy matrix
# For simplicity, we'll use a symmetric matrix with small random values
interaction_energies = np.random.uniform(-10, 10, (n, n))
np.fill_diagonal(interaction_energies, 0) # No self-interaction
interaction_energies = (interaction_energies + interaction_energies.T) / 2 # Make it symmetric
# Construct the Hamiltonian matrix
H = np.diag(self_energies) + interaction_energies
# Diagonalize the Hamiltonian
eigenvalues, eigenvectors = np.linalg.eigh(H)
# Print the results
print("Sefirot:", sefirot)
print("Self-Energies:", self_energies)
print("Interaction Energies:\n", interaction_energies)
print("Hamiltonian:\n", H)
print("Eigenvalues:", eigenvalues)
print("Eigenvectors:\n", eigenvectors)