Estimate a Stochastic Growth Matrix Based on Length Structure Data
This package describes a theoretical model expressing the variability
observed in the individual growth, such that each individual in the
population exhibits a growth pattern with a nonlinear trend toward an
expected value. Thus, the growth is represented by the proportion of
individuals in the length class
Install the CRAN version:
install.packages("Gtransition")
Or install de development version:
# install.packages("devtools")
devtools::install_github("ejosymart/Gtransition")
After, that call the package:
library("Gtransition")
This is a basic example which shows you how to calculate the transition growth matrix:
output <- mgi(lowerL = 78, upperL = 202, classL = 4,
Linf = 197.42, k = 0.1938, method = "vonB")
output
#> $delta
#> [1] 20.6867442 19.9820348 19.2773254 18.5726160 17.8679066 17.1631972
#> [7] 16.4584878 15.7537784 15.0490690 14.3443596 13.6396503 12.9349409
#> [13] 12.2302315 11.5255221 10.8208127 10.1161033 9.4113939 8.7066845
#> [19] 8.0019751 7.2972657 6.5925564 5.8878470 5.1831376 4.4784282
#> [25] 3.7737188 3.0690094 2.3643000 1.6595906 0.9548812 0.2501718
#> [31] 0.0000000
#>
#> $Laverage
#> [1] 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152
#> [20] 156 160 164 168 172 176 180 184 188 192 196 200
#>
#> attr(,"class")
#> [1] "Gincrement" "list"
delta <- output$delta
Laverage <- output$Laverage
Gmat <- transitionM(lowerL = 78, upperL = 202, classL = 4,
distribution = "gamma",
delta = delta, beta = 0.105, sigma = NULL)
plot(Gmat)
plot(Gmat, xlab = "XLAB", ylab = "YLAB", adjY = -25,
col = "grey40", sizeAxis1 = 0.5, sizeAxis2 = 0.5,
filename = "myplot",
savePDF = TRUE, widthPDF = 3, heightPDF = 10,
savePNG = TRUE, widthPNG = 300, heightPNG = 1000, resPNG = 110)
Luquin-Covarrubias M., Morales-Bojorquez E. (2020). Effects of stochastic growth on population dynamics and management quantities estimated from an integrated catch-at-length assessment model: Panopea globosa as case study. Ecologial Modeling 440, 109384. https://doi.org/10.1016/j.ecolmodel.2020.109384
Sullivan P.J., Lai H., Galluci V.F. (1990). A Catch-at-Length analysis that incorporates a stochastic model of growth. Can. J. Fish. Aquat. Sci. 47: 184-198.