๐ We are still in progress making this repo clean. Use it with caution and please report errors and questions to us.
This repository is the official implementation of our paper:
The Surprising Effectiveness of Test-Time Training for Abstract Reasoning
Ekin Akyรผrek, Mehul Damani, Linlu Qiu, Han Guo, Yoon Kim, Jacob Andreas
To install requirements, you can start a fresh conda environment, and install followings with pip:
git clone --recursive git://github.com/ekinakyurek/marc
cd marc/
# For TTT pipeline, we used a fork of torchtune library.
# You need to install it first
conda create -n arc python=3.10
conda activate arc
# Install torchtune with my specific fork
# We need this as editable because we actually use some files
# under third_party/torchtune/recipes/ which doesn't come
# if you just do pip install
cd third_party/torchtune
pip install -e .
# install other required libraries for torchtune
pip install torch torchao --pre --upgrade --index-url https://download.pytorch.org/whl/nightly/cu121
# Then we have simple requirements can be installed as:
pip install -r requirements.txt
๐ You need download the ARC dataset from kaggle link https://www.kaggle.com/competitions/arc-prize-2024/data
๐ You can reach out finetuned models and TTT checkpoints from the following links:
- For Llama-3.x checkpoints: https://huggingface.co/meta-llama
- For our finetuned Llama-3 8B checkpoints: https://huggingface.co/ekinakyurek/marc-8B-finetuned-llama3
- For finetuned BARC checkpoints: https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B
- For our LoRA adapters for Llama-3 8B model: https://huggingface.co/ekinakyurek/marc-lora-adapters-8B-finetuned-llama3
- For our Lora adapter for BARC model: https://huggingface.co/ekinakyurek/marc-lora-adapters-Llama-3.1-ARC-Potpourri-Transduction-8B
To train the model(s) in the paper, run this command:
# Specify data path
data_file=/kaggle/input/arc-prize-2024/arc-agi_evaluation_challenges.json
# Specify finetuned path
base_checkpoint_dir=/path/to/finetuned/model/folder/
# Specify where TTT adapters should be saved
ttt_folder=/path/to/ttt/folder
mkdir -p $ttt_folder
# You need show an initial config file that is compatible with torchtune configs
# This is provided in this repo
lora_config_file=configs/ttt/8B_lora_single_device.yaml
# lora_config_file=configs/ttt/8.1B_lora_single_device.yaml # for barc
# But you can override some of the variables
batch_size=2
epochs=2
learning_rate=5e-5
lora_rank=128
lora_alpha=16.0
lora_to_output=False # doesn't apply for Llama3.2 models for now.
# You can specify how many tasks you want train for.
num_tasks=15
# You can run the main script
python test_time_train.py --lora_config=$lora_config_file \
--base_checkpoint_dir=$base_checkpoint_dir \
--experiment_folder=$ttt_folder \
--data_file=$data_file \
--batch_size=$batch_size \
--epochs=$epochs \
--num_tasks=${num_tasks} \
--lora_rank=$lora_rank \
--lora_alpha=$lora_alpha \
--lora_to_output=$lora_to_output \
--new_format # use --barc_format for barc
๐ If you are using BARC checkpoints and unmask_outputs and if unmask_outputs=True in the program arguments then you need to uncomment these lines in my torchtune clone here
๐ TTT training will save adapter checkpints under
ttt_folder
you specified above.
To do inference with TTT, you run predict.py
# Specify data path
data_file=/kaggle/input/arc-prize-2024/arc-agi_evaluation_challenges.json
# Tell where your Fintuned (named as base) and TTT checkpoints are
base_checkpoint_dir=/path/to/finetuned/model/folder/
ttt_folder=/path/to/ttt/folder
# if solution file is given predict will evaluate the model
solution_file=/kaggle/input/arc-prize-2024/arc-agi_evaluation_solutions.json
temperature=0
n_sample=1
# this should be same as your ttt
max_lora_rank=128
# You need to tell where predictions and submissions should be saved
tti_folder=/path/to/tti/folder
mkdir -p $tti_folder
python predict.py \
--experiment_folder=$tti_folder \
--pretrained_checkpoint=$base_checkpoint_dir \
--lora_checkpoints_folder=$ttt_folder \
--temperature=$temperature \
--n_sample=$n_sample \
--data_file=$data_file \
--solution_file=$solution_file \
--max_lora_rank=$max_lora_rank \
--include_n=1 \
--new_format
๐ For Llama-3 and Llama-3.2 we used different versions of VLLM, and these are not compatible with torchtune version that we use. So, we give setup instructions for vllm for llama3 and vllm for llama3-2 for reproducibiltiy. We use seperate conda environments for inference pipeline.
# For Llama3 and 3.1 models
conda create -n vllm python=3.10
conda activate vllm
pip install vllm@git+https://github.com/ekinakyurek/vllm.git@ekin/torchtunecompat
pip install -r requirements
# For Llama3.2 models
conda create -n vllmnew python=3.10
conda activate vllmnew
pip install vllm@git+https://github.com/ekinakyurek/vllm.git@ekin/ekin/newvllm
pip install -r requirements
- For our finetuned Llama-3 8B + TTT predictions: https://huggingface.co/ekinakyurek/marc-predictions-8B-finetuned-ttted/
- For finetuned BARC + TTT predictions: https://huggingface.co/ekinakyurek/marc-predictions-Llama-3.1-ARC-Potpourri-Transduction-8B-tted/