mapbox-vector-tile is compatible with Python 2.6, 2.7 and 3.5. It is listed on PyPi as mapbox-vector-tile
. The recommended way to install is via pip
:
pip install mapbox-vector-tile
Note that mapbox-vector-tile
depends on Shapely, a Python library for computational geometry which requires a library called GEOS. Please see Shapely's instructions for information on how to install its prerequisites.
Encode method expects an array of layers or atleast a single valid layer. A valid layer is a dictionary with the following keys
-
name
: layer name -
features
: an array of features. A feature is a dictionary with the following keys:geometry
: representation of the feature geometry in WKT, WKB, or a shapely geometry. Coordinates are relative to the tile, scaled in the range[0, 4096)
. See below for example code to perform the necessary transformation. Note thatGeometryCollection
types are not supported, and will trigger aValueError
.properties
: a dictionary with a few keys and their corresponding values.
>>> import mapbox_vector_tile
# Using WKT
>>> mapbox_vector_tile.encode([
{
"name": "water",
"features": [
{
"geometry":"POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))",
"properties":{
"uid":123,
"foo":"bar",
"cat":"flew"
}
}
]
},
{
"name": "air",
"features": [
{
"geometry":"LINESTRING(159 3877, -1570 3877)",
"properties":{
"uid":1234,
"foo":"bar",
"cat":"flew"
}
}
]
}
])
'\x1aH\n\x05water\x12\x18\x12\x06\x00\x00\x01\x01\x02\x02\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03foo\x1a\x03uid\x1a\x03cat"\x05\n\x03bar"\x02 {"\x06\n\x04flew(\x80 x\x02\x1aD\n\x03air\x12\x15\x12\x06\x00\x00\x01\x01\x02\x02\x18\x02"\t\t\xbe\x02\xb6\x03\n\x81\x1b\x00\x1a\x03foo\x1a\x03uid\x1a\x03cat"\x05\n\x03bar"\x03 \xd2\t"\x06\n\x04flew(\x80 x\x02'
# Using WKB
>>> mapbox_vector_tile.encode([
{
"name": "water",
"features": [
{
"geometry":"\001\003\000\000\000\001\000\000\000\005\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\360?\000\000\000\000\000\000\360?\000\000\000\000\000\000\360?\000\000\000\000\000\000\360?\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000",
"properties":{
"uid":123,
"foo":"bar",
"cat":"flew"
}
}
]
},
{
"name": "air",
"features": [
{
"geometry":"\001\003\000\000\000\001\000\000\000\005\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\360?\000\000\000\000\000\000\360?\000\000\000\000\000\000\360?\000\000\000\000\000\000\360?\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000",
"properties":{
"uid":1234,
"foo":"bar",
"cat":"flew"
}
}
]
}
])
'\x1aJ\n\x05water\x12\x1a\x08\x01\x12\x06\x00\x00\x01\x01\x02\x02\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03foo\x1a\x03uid\x1a\x03cat"\x05\n\x03bar"\x02 {"\x06\n\x04flew(\x80 x\x02\x1aY\n\x03air\x12\x1c\x08\x01\x12\x08\x00\x00\x01\x01\x02\x02\x03\x03\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03foo\x1a\x03uid\x1a\x05balls\x1a\x03cat"\x05\n\x03bar"\x03 \xd2\t"\x05\n\x03foo"\x06\n\x04flew(\x80 x\x02'
The encoder expects geometries either:
- In tile-relative coordinates, where the lower left corner is origin and values grow up and to the right, and the tile is 4096 pixels square. For example,
POINT(0 0)
is the lower left corner of the tile andPOINT(4096, 4096)
is the upper right corner of the tile. In this case, the library does no projection, and coordinates are encoded as-is. - In another coordinate system, with the tile bounds given by the
quantize_bounds
parameter. In this case, the library will scale coordinates so that thequantize_bounds
fit within the range (0, 4096) in bothx
andy
directions. Aside than the affine transformation, the library does no other projection.
It is possible to control whether the tile is in a "y down" coordinate system by setting the parameter y_coord_down=True
on the call to encode()
. The default is "y up".
It is possible to control the tile extents (by default, 4096 as used in the examples above), by setting the extents
parameter on the call to encode()
. The default is 4096.
If you have geometries in longitude and latitude (EPSG:4326), you can convert to tile-based coordinates by first projecting to Spherical Mercator (EPSG:3857) and then computing the pixel location within the tile. This example code uses Django's included GEOS library to do the transformation for LineString
objects:
SRID_SPHERICAL_MERCATOR = 3857
def linestring_in_tile(tile_bounds, line):
# `mapbox-vector-tile` has a hardcoded tile extent of 4096 units.
MVT_EXTENT = 4096
from django.contrib.gis.geos import LineString
# We need tile bounds in spherical mercator
assert tile_bounds.srid == SRID_SPHERICAL_MERCATOR
# And we need the line to be in a known projection so we can re-project
assert line.srid is not None
line.transform(SRID_SPHERICAL_MERCATOR)
(x0, y0, x_max, y_max) = tile_bounds.extent
x_span = x_max - x0
y_span = y_max - y0
tile_based_coords = []
for x_merc, y_merc in line:
tile_based_coord = (int((x_merc - x0) * MVT_EXTENT / x_span),
int((y_merc - y0) * MVT_EXTENT / y_span))
tile_based_coords.append(tile_based_coord)
return LineString(*tile_based_coords)
The tile bounds can be found with mercantile
, so a complete usage example might look like this:
from django.contrib.gis.geos import LineString, Polygon
import mercantile
import mapbox_vector_tile
SRID_LNGLAT = 4326
SRID_SPHERICAL_MERCATOR = 3857
tile_xyz = (2452, 3422, 18)
tile_bounds = Polygon.from_bbox(mercantile.bounds(*tile_xyz))
tile_bounds.srid = SRID_LNGLAT
tile_bounds.transform(SRID_SPHERICAL_MERCATOR)
lnglat_line = LineString(((-122.1, 45.1), (-122.2, 45.2)), srid=SRID_LNGLAT)
tile_line = linestring_in_tile(tile_bounds, lnglat_line)
tile_pbf = mapbox_vector_tile.encode({
"name": "my-layer",
"features": [ {
"geometry": tile_line.wkt,
"properties": { "stuff": "things" },
} ]
})
Note that this example may not have anything visible within the tile when rendered. It's up to you to make sure you put the right data in the tile!
Also note that the spec allows the extents to be modified, even though they are often set to 4096 by convention. mapbox-vector-tile
assumes an extent of 4096.
The encoder also has options to quantize the data for you via the quantize_bounds
option. When encoding, pass in the bounds in the form (minx, miny, maxx, maxy) and the coordinates will be scaled appropriately during encoding.
mapbox_vector_tile.encode([
{
"name": "water",
"features": [
{
"geometry":"POINT(15 15)",
"properties":{
"foo":"bar",
}
}
]
}
], quantize_bounds=(10.0, 10.0, 20.0, 20.0))
In this example, the coordinate that would get encoded would be (2048, 2048)
Additionally, if the data is already in a cooridnate system with y values going down, the encoder supports an option, y_coord_down
, that can be set to True. This will suppress flipping the y coordinate values during encoding.
The encoder also supports passing in custom extents. These will be passed through to the layer in the pbf, and honored during any quantization or y coordinate flipping.
mapbox_vector_tile.encode([
{
"name": "water",
"features": [
{
"geometry":"POINT(15 15)",
"properties":{
"foo":"bar",
}
}
]
}
], quantize_bounds=(0.0, 0.0, 10.0, 10.0), extents=50)
In order to maintain consistency between Python 2 and 3, the decimal
module is used to explictly define ROUND_HALF_EVEN
as the rounding method. This can be slower than the built-in round()
function. Encode takes an optional round_fn
where you can specify the round function to be used.
mapbox_vector_tile.encode([
{
"name": "water",
"features": [
{
"geometry":"POINT(15 15)",
"properties":{
"foo":"bar",
}
}
]
}
], quantize_bounds=(0.0, 0.0, 10.0, 10.0), round_fn=round)
Decode method takes in a valid google.protobuf.message Tile and returns decoded string in the following format:
{
layername: {
'extent': 'integer layer extent'
'version': 'integer'
'features': [{
'geometry': 'list of points',
'properties': 'dictionary of key/value pairs',
'id': 'unique id for the given feature within the layer '
}, ...
]
},
layername2: {
# ...
}
}
>>> import mapbox_vector_tile
>>> mapbox_vector_tile.decode('\x1aJ\n\x05water\x12\x1a\x08\x01\x12\x06\x00\x00\x01\x01\x02\x02\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03foo\x1a\x03uid\x1a\x03cat"\x05\n\x03bar"\x02 {"\x06\n\x04flew(\x80 x\x02\x1aY\n\x03air\x12\x1c\x08\x01\x12\x08\x00\x00\x01\x01\x02\x02\x03\x03\x18\x03"\x0c\t\x00\x80@\x1a\x00\x01\x02\x00\x00\x02\x0f\x1a\x03foo\x1a\x03uid\x1a\x05balls\x1a\x03cat"\x05\n\x03bar"\x03 \xd2\t"\x05\n\x03foo"\x06\n\x04flew(\x80 x\x02')
{
'water': {
'extent': 4096,
'version': 2,
'features': [{
'geometry': {'type': 'Polygon', 'coordinates': [[0, 0], [0, 1], [1, 1], [1, 0], [0, 0]]},
'properties': {
'foo': 'bar',
'uid': 123,
'cat': 'flew'
},
'type': 3,
'id': 1
}
]
},
'air': {
'extent': 4096,
'version': 2,
'features': [{
'geometry': {'type': 'Polygon', 'coordinates': [[0, 0], [0, 1], [1, 1], [1, 0], [0, 0]]},
'properties': {
'foo': 'bar',
'uid': 1234,
'balls': 'foo',
'cat': 'flew'
},
'type': 3,
'id': 1
}
]
}
}
Here's how you might decode a tile from a file.
>>> import mapbox_vector_tile
>>> with open('tile.mvt', 'rb') as f:
>>> data = f.read()
>>> decoded_data = mapbox_vector_tile.decode(data)
>>> with open('out.txt', 'w') as f:
>>> f.write(repr(decoded_data))
The c++ implementation of the underlying protobuf library is more performant than the pure python one. Depending on your operating system, you might need to compile the C++ library or install it.
The version of protobuf (libprotobuf9) available on debian Jessie is 2.6.1. You can install it with the proper python bindings from your package manager :
$ sudo apt-get install libprotoc9 libprotobuf9 protobuf-compiler python-protobuf
Then, you'll have to enable two environnement variable BEFORE runing your python program :
$ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=cpp
$ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION_VERSION=2
Click here to see what changed over time in various versions.