The official implementation of the paper "PIVEN: A Deep Neural Network for Prediction Intervals with Specific Value Prediction" by Eli Simhayev, Gilad Katz and Lior Rokach.
Our paper has been accepted to Knowledge Based Systems 🙂
https://doi.org/10.1016/j.knosys.2022.108685
A neural network with a PIVEN output layer returns a point prediction as well as a lower and upper prediction interval (PI) for each target in a regression problem. The image below shows how the lower and upper PI change as we keep training the model:
We thank Jasper Ginn (@JasperHG90) from GoDataDriven (godatadriven/piven) for the image 🙂
A simple fast colab demo using Keras is included in PIVEN_Demo.ipynb.
├── age
│ ├── Bone age ground truth.xlsx --- RSNA Bong Age Ground-Truth
│ ├── get_age_data.sh --- Download dataset from kaggle
│ ├── main.py --- Run bone age experiment
├── imdb
│ ├── densenet.py
│ ├── generators.py
│ ├── get_imdb_data.sh --- Download dataset
│ ├── imdb_create_db.py --- Run after downloading the dataset
│ ├── main.py --- Run imdb age estimation experiment
│ ├── model.py
│ ├── subpixel.py
│ ├── tensorflow_backend.py
│ ├── train_callbacks.py
│ └── utils.py
└── uci
├── code
│ ├── DataGen.py
│ ├── DeepNetPI.py
│ ├── alpha_experiment.py --- Run alpha experiment on UCI
│ ├── main.py --- Run UCI experiments
│ ├── params_deep_ens.json --- deep ensembles hyperparameters
│ ├── params.json --- piven and qd hyperparameters
│ └── utils.py
├── get_song_dataset.sh --- Download Year Prediction MSD dataset
└── UCI_Datasets
- pandas==0.25.2
- numpy==1.18.1
- matplotlib==3.0.3
- tensorflow==1.15.0
- keras==2.3.1
- xlrd==1.2.0
- scikit-learn==0.22
- tqdm==4.45.0
- opencv-python==4.2.0.34
To install requirements:
pip install -r requirements.txt
All experiments tested on Ubuntu 18.04 with Python 3.6.
Our UCI experiments were inspired by Tim Pearce's implementation of High-Quality Prediction Intervals for Deep Learning: A Distribution-Free, Ensembled Approach. Moreover, in IMDB age estimation experiment we used the preprocessing implemented in SSR-Net: A Compact Soft Stagewise Regression Network for Age Estimation.
If you use PIVEN in your research please use the following BibTeX entry:
@article{simhayev2022integrated,
title={Integrated prediction intervals and specific value predictions for regression problems using neural networks},
author={Simhayev, Eli and Katz, Gilad and Rokach, Lior},
journal={Knowledge-Based Systems},
volume={247},
pages={108685},
year={2022},
publisher={Elsevier}
}