As in Deep-OC-SORT, follow the following instructions.
After cloning, install external dependencies:
cd external/YOLOX/
pip install -r requirements.txt && python setup.py develop
cd ../deep-person-reid/
pip install -r requirements.txt && python setup.py develop
cd ../fast_reid/
pip install -r docs/requirements.txt
OCSORT dependencies are included in the external dependencies. If you're unable to install faiss-gpu
needed by fast_reid
,
faiss-cpu
should be adequate. Check the external READMEs for any installation issues.
Add the weights to the
external/weights
directory (do NOT untar the .pth.tar
YOLOX files).
Place MOT17/20 and DanceTrack under:
data
|——————mot (this is MOT17)
| └——————train
| └——————test
|——————MOT20
| └——————train
| └——————test
|——————dancetrack
| └——————train
| └——————test
| └——————val
and run:
python3 data/tools/convert_mot17_to_coco.py
python3 data/tools/convert_mot20_to_coco.py
python3 data/tools/convert_dance_to_coco.py
For Deep-OC-SORT, which is the baseline, run:
exp=best_paper_ablations
python3 main.py --exp_name $exp --post --grid_off --new_kf_off --dataset mot17 --w_assoc_emb 0.75 --aw_param 0.5
python3 main.py --exp_name $exp --post --grid_off --new_kf_off --dataset mot20 --track_thresh 0.4 --w_assoc_emb 0.75 --aw_param 0.5
python3 main.py --exp_name $exp --post --grid_off --new_kf_off --dataset dance --aspect_ratio_thresh 1000 --w_assoc_emb 1.25 --aw_param 1
For Fast-Deep-OC-SORT add the following flags:
exp=best_paper_ablations
python3 main.py --exp_name $exp --post --grid_off --new_kf_off --dataset mot17 --w_assoc_emb 0.75 --aw_param 0.5 --occlusion_threshold {IoU_threshold} --aspect_ratio_threshold {aspect_ratio_threshold}
python3 main.py --exp_name $exp --post --grid_off --new_kf_off --dataset mot20 --track_thresh 0.4 --w_assoc_emb 0.75 --aw_param 0.5 --occlusion_threshold {IoU_threshold} --aspect_ratio_threshold {aspect_ratio_threshold}
python3 main.py --exp_name $exp --post --grid_off --new_kf_off --dataset dance --aspect_ratio_thresh 1000 --w_assoc_emb 1.25 --aw_param 1 --occlusion_threshold {IoU_threshold} --aspect_ratio_threshold {aspect_ratio_threshold}
where {IoU_threshold}
and {aspect_ratio_threshold}
are the parameters that are introduced in Fast-Deep-OC-SORT, and explained in the paper.
To run TrackEval for HOTA and Identity with linear post-processing on MOT17, run:
python3 external/TrackEval/scripts/run_mot_challenge.py \
--SPLIT_TO_EVAL val \
--METRICS HOTA Identity \
--TRACKERS_TO_EVAL ${exp}_post \
--GT_FOLDER results/gt/ \
--TRACKERS_FOLDER results/trackers/ \
--BENCHMARK MOT17