This is a Singer tap that produces JSON-formatted data following the Singer spec.
This tap:
- Pulls raw data from the Google Sheets v4 API
- Extracts the following endpoints:
- Outputs the following metadata streams:
- File Metadata: Name, audit/change info from Google Drive
- Spreadsheet Metadata: Basic metadata about the Spreadsheet: Title, Locale, URL, etc.
- Sheet Metadata: Title, URL, Area (max column and row), and Column Metadata
- Column Metadata: Column Header Name, Data type, Format
- Sheets Loaded: Sheet title, load date, number of rows
- For each Sheet:
- Outputs the schema for each resource (based on the column header and datatypes of row 2, the first row of data)
- Outputs a record for all columns that have column headers, and for each row of data
- Emits a Singer ACTIVATE_VERSION message after each sheet is complete. This forces hard deletes on the data downstream if fewer records are sent.
- Primary Key for each row in a Sheet is the Row Number:
__sdc_row
- Each Row in a Sheet also includes Foreign Keys to the Spreadsheet Metadata,
__sdc_spreadsheet_id
, and Sheet Metadata,__sdc_sheet_id
.
- Endpoint: https://www.googleapis.com/drive/v3/files/${spreadsheet_id}?fields=id,name,createdTime,modifiedTime,version
- Primary keys: id
- Replication strategy: Incremental (GET file audit data for spreadsheet_id in config)
- Process/Transformations: Replicate Data if Modified
- Endpoint: https://sheets.googleapis.com/v4/spreadsheets/${spreadsheet_id}?includeGridData=true&ranges=1:2
- This endpoint eturns spreadsheet metadata, sheet metadata, and value metadata (data type information)
- Primary keys: Spreadsheet Id, Sheet Id, Column Index
- Foreign keys: None
- Replication strategy: Full (get and replace file metadata for spreadshee_id in config)
- Process/Transformations:
- Verify Sheets: Check sheets exist (compared to catalog) and check gridProperties (available area)
- sheetId, title, index, gridProperties (rowCount, columnCount)
- Verify Field Headers (1st row): Check field headers exist (compared to catalog), missing headers (columns to skip), column order/position, and column name uniqueness
- Create/Verify Datatypes based on 2nd row value and cell metadata
- First check:
- effectiveValue: key
- Valid types: numberValue, stringValue, boolValue
- Invalid types: formulaValue, errorValue
- effectiveValue: key
- Then check:
- effectiveFormat.numberFormat.type
- Valid types: UNEPECIFIED, TEXT, NUMBER, PERCENT, CURRENCY, DATE, TIME, DATE_TIME, SCIENTIFIC
- Determine JSON schema column data type based on the value and the above cell metadata settings.
- If DATE, DATE_TIME, or TIME, set JSON schema format accordingly
- effectiveFormat.numberFormat.type
- First check:
- Verify Sheets: Check sheets exist (compared to catalog) and check gridProperties (available area)
- Endpoint: https://sheets.googleapis.com/v4/spreadsheets/${spreadsheet_id}/values/'${sheet_name}'!${row_range}?dateTimeRenderOption=SERIAL_NUMBER&valueRenderOption=UNFORMATTED_VALUE&majorDimension=ROWS
- This endpoint loops through sheets and row ranges to get the unformatted values (effective values only), dates and datetimes as serial numbers
- Primary keys: _sdc_row
- Replication strategy: Full (GET file audit data for spreadsheet_id in config)
- Process/Transformations:
- Loop through sheets (compared to catalog selection)
- Send metadata for sheet
- Loop through ALL columns for columns having a column header
- Loop through ranges of rows for ALL rows in sheet available area max row (from sheet metadata)
- Transform values, if necessary (dates, date-times, times, boolean).
- Date/time serial numbers converted to date, date-time, and time strings. Google Sheets uses Lotus 1-2-3 Serial Number format for date/times. These are converted to normal UTC date-time strings.
- Process/send records to target
- Loop through sheets (compared to catalog selection)
The Google Sheets Setup & Authentication Google Doc provides instructions show how to configure the Google Cloud API credentials to enable Google Drive and Google Sheets APIs, configure Google Cloud to authorize/verify your domain ownership, generate an API key (client_id, client_secret), authenticate and generate a refresh_token, and prepare your tap config.json with the necessary parameters.
- Enable Googe Drive APIs and Authorization Scope: https://www.googleapis.com/auth/drive.metadata.readonly
- Enable Google Sheets API and Authorization Scope: https://www.googleapis.com/auth/spreadsheets.readonly
- Tap config.json parameters:
- client_id: identifies your application
- client_secret: authenticates your application
- refresh_token: generates an access token to authorize your session
- spreadsheet_id: unique identifier for each spreadsheet in Google Drive
- start_date: absolute minimum start date to check file modified
- user_agent: tap-name and email address; identifies your application in the Remote API server logs
-
Install
Clone this repository, and then install using setup.py. We recommend using a virtualenv:
> virtualenv -p python3 venv > source venv/bin/activate > python setup.py install OR > cd .../tap-google-sheets > pip install .
-
Dependent libraries The following dependent libraries were installed.
> pip install target-json > pip install target-stitch > pip install singer-tools > pip install singer-python
-
Create your tap's
config.json
file. Include the client_id, client_secret, refresh_token, site_urls (website URL properties in a comma delimited list; do not include the domain-level property in the list), start_date (UTC format), and user_agent (tap name with the api user email address).{ "client_id": "YOUR_CLIENT_ID", "client_secret": "YOUR_CLIENT_SECRET", "refresh_token": "YOUR_REFRESH_TOKEN", "spreadsheet_id": "YOUR_GOOGLE_SPREADSHEET_ID", "start_date": "2019-01-01T00:00:00Z", "user_agent": "tap-google-sheets <api_user_email@example.com>" }
Optionally, also create a
state.json
file.currently_syncing
is an optional attribute used for identifying the last object to be synced in case the job is interrupted mid-stream. The next run would begin where the last job left off. Only theperformance_reports
uses a bookmark. The date-time bookmark is stored in a nested structure based on the endpoint, site, and sub_type.{ "currently_syncing": "file_metadata", "bookmarks": { "file_metadata": "2019-09-27T22:34:39.000000Z" } }
-
Run the Tap in Discovery Mode This creates a catalog.json for selecting objects/fields to integrate:
tap-google-sheets --config config.json --discover > catalog.json
See the Singer docs on discovery mode here.
-
Run the Tap in Sync Mode (with catalog) and write out to state file
For Sync mode:
> tap-google-sheets --config tap_config.json --catalog catalog.json > state.json > tail -1 state.json > state.json.tmp && mv state.json.tmp state.json
To load to json files to verify outputs:
> tap-google-sheets --config tap_config.json --catalog catalog.json | target-json > state.json > tail -1 state.json > state.json.tmp && mv state.json.tmp state.json
To pseudo-load to Stitch Import API with dry run:
> tap-google-sheets --config tap_config.json --catalog catalog.json | target-stitch --config target_config.json --dry-run > state.json > tail -1 state.json > state.json.tmp && mv state.json.tmp state.json
-
Test the Tap
While developing the Google Search Console tap, the following utilities were run in accordance with Singer.io best practices: Pylint to improve code quality:
> pylint tap_google_sheets -d missing-docstring -d logging-format-interpolation -d too-many-locals -d too-many-arguments
Pylint test resulted in the following score:
Your code has been rated at 9.78/10
To check the tap and verify working:
> tap-google-sheets --config tap_config.json --catalog catalog.json | singer-check-tap > state.json > tail -1 state.json > state.json.tmp && mv state.json.tmp state.json
Check tap resulted in the following:
The output is valid. It contained 3881 messages for 13 streams. 13 schema messages 3841 record messages 27 state messages Details by stream: +----------------------+---------+---------+ | stream | records | schemas | +----------------------+---------+---------+ | file_metadata | 1 | 1 | | spreadsheet_metadata | 1 | 1 | | Test-1 | 9 | 1 | | Test 2 | 2 | 1 | | SKU COGS | 218 | 1 | | Item Master | 216 | 1 | | Retail Price | 273 | 1 | | Retail Price NEW | 284 | 1 | | Forecast Scenarios | 2681 | 1 | | Promo Type | 91 | 1 | | Shipping Method | 47 | 1 | | sheet_metadata | 9 | 1 | | sheets_loaded | 9 | 1 | +----------------------+---------+---------+
Copyright © 2019 Stitch