/realistic-ssl-evaluation-pytorch

Reimplementation of "Realistic Evaluation of Deep Semi-Supervised Learning Algorithms"

Primary LanguagePythonMIT LicenseMIT

realistic-ssl-evaluation-pytorch

This repository is reimplementation of Realistic Evaluation of Deep Semi-Supervised Learning Algorithms, by Avital Oliver*, Augustus Odena*, Colin Raffel*, Ekin D. Cubuk, and Ian J. Goodfellow, arXiv preprint arXiv:1804.09170. Original repo is here.

NOTE: This repository has been deprecated. Please see here, which includes UDA and FixMatch.

Requirements

  • Python 3.6+
  • PyTorch 1.1.0
  • torchvision 0.3.0
  • numpy 1.16.2

How to run

Prepare dataset

python build_dataset.py

Default setting is SVHN 1000 labels. If you try other settings, please check the options first by python build_dataset.py -h.

Running experiments

python train.py

Default setting is VAT. Please check the options by python python train.py -h

Performance

WIP

algorithm paper this repo
cifar10 4k labels svhn 1k labels cifar10 4k labels svhn 1k labels
Supervised 20.26 ±0.38 12.83 ±0.47 20.35±0.14 12.33±0.25
Pi-Model 16.37 ±0.63 7.19 ±0.27 16.24±0.38 7.81±0.39
Mean Teacher 15.87 ±0.28 5.65 ±0.47 15.77±0.22 6.48±0.44
VAT 13.86 ±0.27 5.63 ±0.20 13.83±0.49 5.84±0.20
VAT+EM 13.13 ±0.39 5.35 ±0.19 13.30±0.27 5.76±0.13
Pseudo-Label 17.78 ±0.57 7.62 ±0.29 N/A N/A
ICT ( 7.66 ±0.17 ) ( 3.53 ±0.07 ) N/A N/A
MixMatch ( 6.50 ) ( 3.27 ±0.31 ) N/A N/A

NOTE: Experimental setting of ICT and MixMatch papers is different from this benchmark.

Reference