/PedestrianActionBenchmark

Code and models for the WACV 2021 paper "Benchmark for evaluating pedestrian action prediction"

Primary LanguagePythonMIT LicenseMIT

Pedestrian Crossing Action Prediction Benchmark

Benchmark for evaluating pedestrian action prediction algorithms that inlcude code for training, testing and evaluating baseline and state-of-the-art models for pedestrian action prediction on PIE and JAAD datasets.

Paper: I. Kotseruba, A. Rasouli, J.K. Tsotsos, Benchmark for evaluating pedestrian action prediction. WACV, 2021 (see citation information below).

Installation instructions

  1. Download and extract PIE and JAAD datasets.

    Follow the instructions provided in https://github.com/aras62/PIE and https://github.com/ykotseruba/JAAD.

  2. Download Python data interface.

    Copy pie_data.py and jaad_data.py from the corresponding repositories into PedestrianActionBenchmark directory.

  3. Install docker (see instructions for Ubuntu 16.04 and Ubuntu 20.04).

  4. Change permissions for scripts in docker folder:

    chmod +x docker/*.sh
    
  5. Build docker image

    docker/build_docker.sh
    

    Optionally, you may set custom image name and/or tag using this command (e.g. to use two GPUs in parallel):

    docker/build_docker.sh -im <image_name> -t <tag>
    

Running instructions using Docker

Run container in interactive mode:

Set paths for PIE and JAAD datasets in docker/run_docker.sh (see comments in the script).

Then run:

docker/run_docker.sh

Train and test models

Use train_test.py script with config_file:

python train_test.py -c <config_file>

For example, to train PCPA model run:

python train_test.py -c config_files/PCPA.yaml

The script will automatially save the trained model weights, configuration file and evaluation results in models/<dataset>/<model_name>/<current_date>/ folder.

See comments in the configs_default.yaml and action_predict.py for parameter descriptions.

Model-specific YAML files contain experiment options exp_opts that overwrite options in configs_default.yaml.

Test saved model

To re-run test on the saved model use:

python test_model.py <saved_files_path>

For example:

python test_model.py models/jaad/PCPA/01Oct2020-07h21m33s/

Authors

Please email yulia_k@eecs.yorku.ca or arasouli.ai@gmail.com if you have any issues with running the code or using the data.

License

This project is licensed under the MIT License - see the LICENSE file for details

Citation

If you use the results, analysis or code for the models presented in the paper, please cite:

@inproceedings{kotseruba2021benchmark,
	title={{Benchmark for Evaluating Pedestrian Action Prediction}},
	author={Kotseruba, Iuliia and Rasouli, Amir and Tsotsos, John K},
	booktitle={Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV)},
	pages={1258--1268},
	year={2021}
}

If you use model implementations provided in the benchmark, please cite the corresponding papers

  • ATGC [1]
  • C3D [2]
  • ConvLSTM [3]
  • HierarchicalRNN [4]
  • I3D [5]
  • MultiRNN [6]
  • PCPA [7]
  • SFRNN [8]
  • SingleRNN [9]
  • StackedRNN [10]
  • Two_Stream [11]

[1] Amir Rasouli, Iuliia Kotseruba, and John K Tsotsos. Are they going to cross? A benchmark dataset and baseline for pedestrian crosswalk behavior. ICCVW, 2017.

[2] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,and Manohar Paluri. Learning spatiotemporal features with 3D convolutional networks. ICCV, 2015.

[3] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung,Wai-Kin Wong, and Wang-chun Woo. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. NeurIPS, 2015.

[4] Yong Du, Wei Wang, and Liang Wang. Hierarchical recurrent neural network for skeleton based action recognition. CVPR, 2015

[5] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? A new model and the kinetics dataset. CVPR, 2017.

[6] Apratim Bhattacharyya, Mario Fritz, and Bernt Schiele. Long-term on-board prediction of people in traffic scenes under uncertainty. CVPR, 2018.

[7] Iuliia Kotseruba, Amir Rasouli, and John K Tsotsos, Benchmark for evaluating pedestrian action prediction. WACV, 2021.

[8] Amir Rasouli, Iuliia Kotseruba, and John K Tsotsos. Pedestrian Action Anticipation using Contextual Feature Fusion in Stacked RNNs. BMVC, 2019

[9] Iuliia Kotseruba, Amir Rasouli, and John K Tsotsos. Do They Want to Cross? Understanding Pedestrian Intention for Behavior Prediction. In IEEE Intelligent Vehicles Symposium (IV), 2020.

[10] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vi-jayanarasimhan, Oriol Vinyals, Rajat Monga, and GeorgeToderici. Beyond short snippets: Deep networks for video classification. CVPR, 2015.

[11] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recognition in videos. NeurIPS, 2014.